Vega: Scaling MLOps Pipelines at Credit Karma using Apache Beam and Dataflow

Jul-18 12:00-12:50 in 204
Add to Calendar 07/18/2022 12:00 PM 07/18/2022 12:50 PM America/Los_Angeles AS24: Vega: Scaling MLOps Pipelines at Credit Karma using Apache Beam and Dataflow

At Credit Karma, we enable financial progress for more than 100 million of our members by recommending them personalized financial products when they interact with our application. In this talk we are introducing our machine learning platform that uses Apache Beam and Google Dataflow to build interactive and production MLOps pipelines to serve relevant financial products to Credit Karma users.

Vega, Credit Karma’s Machine Learning Platform, uses Bigquery, Apache Beam, Distributed Tensorflow and Airflow for building MLOps pipelines. Apache Beam with Dataflow Runner is used in Vega for scalable feature transformations, model chaining, batch scoring of Tensorflow and PMML models, model analysis and online model monitoring.

In this session we will walk you through the various scalable Apache Beam jobs that we use for training, deploying, monitoring and refreshing the models for our recommendation system. Overall, our MLOps pipelines leveraging Apache Beam have improved the efficiency of ML Engineering. Using our pipelines we deploy more than 500 Tensorflow and Tree models every week to production.

204

At Credit Karma, we enable financial progress for more than 100 million of our members by recommending them personalized financial products when they interact with our application. In this talk we are introducing our machine learning platform that uses Apache Beam and Google Dataflow to build interactive and production MLOps pipelines to serve relevant financial products to Credit Karma users.

Vega, Credit Karma’s Machine Learning Platform, uses Bigquery, Apache Beam, Distributed Tensorflow and Airflow for building MLOps pipelines. Apache Beam with Dataflow Runner is used in Vega for scalable feature transformations, model chaining, batch scoring of Tensorflow and PMML models, model analysis and online model monitoring.

In this session we will walk you through the various scalable Apache Beam jobs that we use for training, deploying, monitoring and refreshing the models for our recommendation system. Overall, our MLOps pipelines leveraging Apache Beam have improved the efficiency of ML Engineering. Using our pipelines we deploy more than 500 Tensorflow and Tree models every week to production.