
Relational Beam:
Automatically optimize your pipeline

20
21

Andrew Pilloud
https://s.apache.org/beam-relational-2021

2021

2021

Agenda
1. What is Relational?

2. How can we optimize?

3. Today: Beam SQL

4. Tomorrow: Relational Beam

2

2021

Beam is falling behind!

3

2021

Beam is falling behind!
● Beam model has been mostly stable since 2015.

○ Schemas came out of SQL in 2018.

● What is the next big thing?

4

2021

Beam is falling behind!
● Beam model has been mostly stable since 2015.

○ Schemas came out of SQL in 2018.

● What is the next big thing?

Relational in Beam Core
● The underlying runners have many of these features…

since 2015!
5

2021

20
21

2021

What is Relational?

6

2021

What is Relational?
● Relational Processing involves focusing on similarities

among pieces of information

● Relational Optimization involves taking advantage of
these similarities to reduce work

● Think traditional relational databases: Postgres, Oracle

7

2021

(Traditional) Beam is not Relational
● Beam processes opaque records

○ Internally represented as byte[] or Object

○ Object form provided for user convenience

● Sometimes it processes <byte[] key, byte[] value>

○ Structure still opaque, only aware of equality

● Beam focuses on item-specific information

8

2021

Beam is not
Relational

9

2021

Your data is
Relational

10

2021

Beam can be Relational
● We need metadata about the structure of your data

○ What is the structure of that byte[]?

○ How much data can we expect?

● We need metadata about the computations performed

○ What columns do you access?

○ What transforms are performed?

11

2021

Beam Schemas enable Relational
Schema.builder()
 .addInt64Field("foo").addInt32Field("baz").build();

● Beam Schemas expose the structure of your data

○ This can often be inferred!

● Provides an abstraction on of data access (Row)

● Doesn’t provide metadata about computations

12

2021

Beam SchemaIO enables Relational
SchemaIO from(String location, Row configuration, @Nullable Schema dataSchema);

public interface SchemaIO {
 PTransform<PBegin, PCollection<Row>> buildReader();
}

public interface PushdownProjector {
 PTransform<? extends PInput, PCollection<Row>> withProjectionPushdown(FieldAccessDescriptor);
}

● Beam SchemaIO exposes the structure of your IOs

● Doesn’t provide metadata… yet.

13

2021

Beam SQL is Relational
SELECT SUM(foo) AS baz, end_of_window
FROM my_topic WHERE something_is_true(bizzle)

 GROUP BY TUMBLING(timestamp, 1 HOUR)
HAVING baz > my_magic_number LIMIT 3;

● Relational model: Projection, Filter, Aggregation

● … and advanced bits like nested ROW, ARRAY, UNNEST

● Optimizations only within SqlTransform

14

2021

Java Schema Transforms are Relational Too!
my_topic
 .apply(Select.fieldNames("foo", "end_of_window"))

● Not all operators generate metadata for optimization

● No optimizations yet

15

2021

20
21

2021

How can we optimize?

16

2021

Global Relational Optimizer
● Allow a pipeline to be transformed after expand

○ Eventually optimizing portability protos

● No core model for this yet!

○ Where does the optimizer run?

● Beam Java design mailed Tuesday!

17

2021

Global Relational Optimizer

Project

Join

Filter

Project

TableScan

TableModify

TableScan

18

Filter

Project

Join

Filter

Project

TableScan

TableModify

TableScan

2021

Column Pruning
● Stop passing unused fields as soon as possible

○ Ideally at the source IO but also before shuffles

● Beam Java has a model for this: FieldAccessDescriptor

○ PTransform provides a list of accessed columns

● Beam Java has a new implementation on Schema IO!

19

2021

Column Pruning

Project

Join

Filter

Project

TableScan

TableModify

TableScan

20

Join

Filter

TableProject

TableModify

TableProject

2021

Join Algorithm Selection and Reordering
● Automatically choose optimal joins

○ Also reorder joins

● No core model for this yet!

○ Need an interface to query IOs for statistics

● Beam SQL has an implementation

21

2021

Join Algorithm Selection and Reordering

SideInput

Stream

TableModify

Bounded

22

Bounded
Bounded

TableModify

Bounded

Stream

SideInput

CoGroup

SideInput

2021

Row Expression
● Calcite calls this a RexNode

○ `SELECT <row>` and `WHERE <bool>`from SQL

● Three Required Operators

○ Field Access (FieldAccessDescriptor)

○ Constant (Schema Value)

○ Call (Arbitrary function call, the difficult one)

23

2021

Filter Pushdown
● Apply filters as early as possible

○ Ideally at the source IO but also before shuffles

● No core model for this yet!

○ Need a “row expression” language

● Beam SQL has an implementation

24

2021

Filter Pushdown

Project

Join

Filter

Project

TableScan

TableModify

TableScan

25

Project

Join

Project

FilterScan

TableModify

FilterScan

2021

Project Pushdown
● Stop passing unused data as soon as possible

○ Ideally at the source IO but also before shuffles

● Beam Java’s FieldAccessDescriptor may be extended

○ Need a “row expression” language

● Beam SQL has an implementation but no IO support

26

2021

Filter and Project Pushdown

Project

Join

Filter

Project

TableScan

TableModify

TableScan

27

Join

Select

TableModify

Select

2021

Row Expression Execution
● Allow the optimizer to decide how to execute

○ Eventually pushed down to Runner

● No core model for this yet!

○ Need a “row expression” language

● Beam SQL has multiple implementations

28

Row Expression Execution

(Java)
ParDo

29

input.apply(

 SqlTransform.query(sql))

Java

SELECT key, a + b + c

FROM input WHERE d > 3

SQL (via Java)

⋮

Cloud Dataflow

Apache Spark

Apache Flink

Apache Apex

Gearpump

Apache Samza

Apache Nemo

IBM Streams

Row Expression Execution

(Native)
Expression

30

input.apply(

 SqlTransform.query(sql))

Java

SELECT key, a + b + c

FROM input WHERE d > 3

SQL (via Java)

⋮

Dataflow SQL

Spark SQL

Flink SQL

Apache Apex

Gearpump

Samza SQL

Apache Nemo

IBM Streams

(Java)
ParDo

2021

Vectorized Execution
for (i) { z[i] = x[i] + y[i] }

● Structure data in memory for efficient execution

○ Requires batches, Benefits unclear for Streaming

● No core model for this yet!

○ Java 16 may only require internal changes

● Beam Dataframes has an implementation

31

2021

Computation

32

2021

Columnar Coders
● Structure data in transit for efficient execution

○ Requires batches, Benefits unclear for Streaming

● No core model for this yet!

○ May only require internal changes

● Apache Arrow as a coder

33

2021

Computation

34

Computation

2021

Zero-Copy Project
● Fields can be projected without deserialization or copy

○ Benefit for columnar fields

○ Also for large or expensive streaming fields

● No core model for this yet!

○ May only require internal changes

35

2021 36

ComputationComputation

2021

Deferred Deserialization
● Don’t deserialize fields until first access

○ Benefit for large or expensive fields

● No core model for this yet!

○ May only require internal changes

37

2021

Order Aware Pcollections
● Some attribute of the data is ordered

○ Could be time, could be another key

● No core model for this yet!

38

2021

Retractions
● Sometimes your data is actually a change log!

● Beam is “append only” today.

○ What about a delete?

○ What about a change?

● No core model for this yet!

○ How will it work with IOs

39

2021

20
21

2021

Today:
Beam SQL

40

2021

SqlTransform No Longer Experimental!
● As of Beam 2.33.0 (Coming late September)

○ https://github.com/apache/beam/pull/15244

41

https://github.com/apache/beam/pull/15244

2021

Beam SQL: It’s Apache Calcite, essentially.
● SQL Parsing and Validation*
● Conversion to Relational Algebra*
● Conversion to Physical Execution Plan
● JDBC Driver
● Implementation of Built-in SQL operators
● Project and Filter Code Generation

42

Apache Calcite

43

Beam SQL Java

Parse to AST
input.apply(

 SqlTransform.query(sql))

Beam Java

SELECT key, SUM(value)

FROM input GROUP BY key

Beam SQL (via Java)

Validate AST

Convert to
Logical Plan

Convert to
Physical Plan

Apache Flink

Cloud Dataflow

Pipeline

⋮

2021

SQL Parsing, Validation, and Conversion
● Apache Calcite handles this

○ We’ve extended the parser to support our DDL syntax
○ We provide Calcite with schemas

● Outputs abstract Relational Algebra model of SQL (tree of RelNodes)
○ Filter
○ Project
○ Join
○ Aggregate
○ Values
○ TableScan* (BeamIOSource)
○ TableModify* (BeamIOSink)
○ ...

44

2021

The Calcite Model

Query

Filter

Project

Join

Agg

Filter

Project

TableScan

TableModify

TableModify

TableScan

45

RelNode

2021

The Beam Model

Pipeline

ParDo

ParDo

CoGroup

Combine

ParDo

ParDo

IO Source

IO Sink

IO Sink

IO Source

46

PTransform

PCollection
(bounded or unbounded)

2021

SQL Conversion to Physical plan
● We use Calcite’s implementation of the Volcano Optimizer

○ Uses Rules to convert to a Physical plan and costs to optimize

● Calcite provides basic rules to simplify the RelNodes
○ Filter + Project = Calc

● Beam provides physical RelNodes and rules
○ Calc -> BeamCalc
○ Join -> BeamJoin
○ Aggregate -> BeamAggregation
○ Values -> BeamValues
○ BeamEnumerableConverter*
○ …

● Beam RelNodes are PTransforms

47

2021

Beam Calc (Expression Evaluator)
● Beam Calc is a simple ParDo operation in Beam
● Wraps Calcite reference implementation of EnumerableCalc

○ Starting in Beam 2.10, prior versions used an interpreter
○ Generates Java code for operators at pipeline creation time
○ Complete support for Calcite built-in project functions

● Also have ZetaSQL Calc wrapping ZetaSQL’s reference implementation
○ Relatively slow due to cost of calling from Java to C++

48

2021

Apache Calcite Code Generation
● Generates Java code for row expressions

SELECT id, convert(price), price * 10 WHERE item = “my item” ...

Becomes

doFn(Context c, Row r) {

 if ("my item".equals(r.get(2))) {

 int price = r.get(1);

 c.output(new Row(r.get(0),

MyUdf.convert(price), price * 10));

 }

}

49

2021

ZetaSQL
● ZetaSQL == BigQuery Standard SQL
● Written in C++, currently only works on (modern) Linux systems
● Currently Parses and Validates SQL
● Basic support in Beam with ZetaSQL SqlTransform
● Does not replace Calcite!
● Still @Experimental

50

2021

20
21

2021

Tomorrow:
Relational Beam

51

2021

Relational Beam needs Schemas
● Beam Schemas expose the structure of your data

● Schema Row further abstracts the data

○ Enables some optimizations without user changes

○ Required for now

● Not using Schemas?

○ You Get Nothing! You lose! Good day, sir!

52

2021

Relational Beam needs SchemaIO
● Schema IO is a standardized (internal) interface to IOs

○ Can be retrofitted into existing IOs

○ Not a replacement for builders

● We are still adding the Relational pieces

○ Project and Filter Push-down

○ Record Count and Rate Statistics

53

2021

Relational Beam needs Field Access Descriptor
● Use Schema Transforms

● Use SqlTransform

● Annotate your Java ParDos with @FieldAccess

● Eventually Static analysis?

54

2021

Relational Beam wants More!
● Use high level interfaces when possible

○ Schema Transforms

○ SqlTransform

○ Dataframes

○ More?

55

Relational Beam: Automatically optimize your pipeline

Andrew Pilloud / apilloud@apache.org

These Slides - https://s.apache.org/beam-relational-2021

2021

