
Simple Ray Tracer with the
Apache Beam Go SDK
Robert Burke (@lostluck) Beam Summit 2021

Learning Goals

● How do Ray Tracers work
● How to write one with the

Beam Go SDK
● How to use SpliitableDoFns

with it
● Debugging Beam Go
● Executing on a Distributed

Runner

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

A Ray is cast

Additional rays are cast

Further Additional rays are cast

Further Additional rays are cast

The Ray Tracing Algorithm

● Read in the scene and it’s configuration options
● Set up the camera
● For each pixel:

○ Cast sampling rays from the camera to the scene
○ Find the object in the scene the ray intersects with
○ Depending on the properties of the object

■ Cast additional sampling rays to determine the color of
the object
● These can be called “bounces”

■ Stop when we hit the bounce limit
○ Accumulate the contribution from all sampling rays
○ Set the pixel color

● Save the image

https://github.com/lostluck/experimental/

Dividing Work

Splittable DoFn

● Create a Restriction for an element
● Split a Restriction for a given element appropriately.
● Create Trackers for a restriction.
● Process the element with respect to the given restriction tracker.

Splittable DoFn

Element: The image being produced.

Restriction: Offset Ranges

- Enumerate each Sample from 1 to
Width*Height*Samples.

- Decompose from numbers back to individual
pixel coordinates.

- Easy to Split, built into Beam

The Problem

type Ray struct {
 Xp,Yp,Zp float64 // Position
 Xv,Yv,Zv float64 // Vector
 Rc,Gc,Bc float64 // Color

 Xpx,Ypx int32 // Pixel
 Bounce, ID int16 // SampleID
}

The Problem

The Problem

Art by @ashleymcnamara, “this is fine” by KC Greene, Gophers by Renee French

Debugging Beam Go Pipelines

● Unit test your code
● Counters
● Local portable runners and

LOOPBACK mode
● Profile your code

Local
Debugging

Counters

Local Runners
and LOOPBACK
Mode

Distributed
Execution

1. Main Program starts up
and constructs the pipeline
object.

2. Sends the worker artifact
etc to the runner.

3. As needed, Runner starts
SDK Worker and Runner
Worker containers, which
fetch the worker artifact.

4. Runner assigns workers
bundles to execute until
termination

Main Program

Runner Job
Managment Service

Your machine

Runner service Worker machine

SDK Worker

Runner Worker

1.

2.

3. & 4.

Distributed
Local Execution

1. Main Program starts up
and constructs the pipeline
object.

2. Sends the worker artifact
etc to the runner.

3. As needed, Runner starts
SDK Worker and Runner
Worker containers, which
fetch the worker artifact.

4. Runner assigns workers
bundles to execute until
termination

Main Program

Runner Job
Managment Service

Your machine

SDK Worker

Runner Worker

1.

2.

3. & 4.

LOOPBACK
Execution
1. Main Program starts up

and constructs the pipeline
object.

2. Runner tells Main program
to start a LOOPBACK
server, to create SDK
Workers

3. Sends the worker artifact
etc to the runner.

4. Runner spins up workers in
the main program process
via Loopback.

5. Runner assigns workers
bundles to execute until
termination

Main Program

Runner
Job Management Service

Your machine

SDK Worker

Runner
Worker

1.

3. 5.

Loopback2.

4.

Starting a job in LOOPBACK mode

Loopback mode
enabled

Profiling

Add calls to pprof.StartCPUProfile(f) and defer pprof.StopCPUProfile()
to your main()

$ <execute job locally, in LOOPBACK with profiling>

$ go install github.com/google/pprof

$ sudo apt-get install graphviz

$ pprof --http=: <binary name> <profile file name>

Profiling w/PProf

PProf Flame Graph

Apache Beam

Distributed Runners

Running a Job on Google Cloud Dataflow

$ go run . --use_beam=true --word=GOOGLE \
--samples=1024 --bounces=5 \
--runner=dataflow \
--project=$PROJECT \
--staging_location=$STAGING_GCS \
--region=us-central1 \
--job_name=rebo-gbrt3 \
--environment_config=$SDK_CONTAINER

Job run on Google Cloud Dataflow

Job run on Google Cloud Dataflow

Learning Goals

● How do Ray Tracers work
● How to write one with the

Beam Go SDK
● How to use SpliitableDoFns

with it
● Debugging Beam Go
● Executing on a Distributed

Runner

Robert Burke (@lostluck) Simple Ray Tracer with the Apache Beam Go SDK

Fabien Sanglard and
Andrew Kensler
https://fabiensanglard.net/
postcard_pathtracer/

The Beam Summit
organizers

Viewers like you.

https://fabiensanglard.net/postcard_pathtracer/
https://fabiensanglard.net/postcard_pathtracer/

Mathematics!

