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Production Machine Learning
Agenda

1. Overview of RunInference and its place within TFX ML-OPS

2. Doing our 5 times table, with Apache Beam and RunInference

3. Pre and Post-processing

4. Branching and sequential inference pipelines

5. GPUs with the Dataflow Runner



TFX / RunInference- 
Quick Overview



Machine Learning & Pipelines
ML development falls naturally into a series of tasks
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What do we mean by portability?
TFX runs just about anywhere

Vertex AI

Flink Dataflow

Execution

Orchestration

Processing



Why is portability important?

● Execution environments

● Orchestrators

● Distributed processing frameworks

● Languages (to some extent)

● Teams / Business units

Meet the user’s needs, instead of requiring them to meet yours



Hello TFX

Bulk InferenceExampleGen
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Component: BulkInferrer

Validation 
Outcome

BulkInferrer

Evaluator

Pusher
PusherInference 

Result

Block batch inference on a successful model validation. 
Choose the inference examples from example gen's output.
Choose the signatures and tags of inference model.

Inputs and Outputs

Configuration Options

ExampleGen

Unlabelled 
examples

Trainer

Model

Inference Result

Contains features and predictions.

bulk_inferrer = BulkInferrer(  
    examples=inference_example_gen.outputs[‘examples’],
    model_export=trainer.outputs[‘output’],
    model_blessing=evaluator.outputs[‘blessing’],
    data_spec=bulk_inferrer_pb2.DataSpec(
        example_splits=[‘unlabelled’]),
    model_spec=bulk_inferrer_pb2.ModelSpec())

Configuration



BulkInferrer & RunInference

TFX components run data processing in Beam pipelines

● BulkInferrer runs inference on Beam using RunInference
● RunInference included in tensorflow/tfx-bsl
● RunInference can also be used in pure Beam

○ Beam pipelines with no TFX
○ Beam pipelines inside TFX custom components



A simple model



What can you do with a model?

Imagine trying to do these without a model!

● Speech to text
● Text to customer sentiment
● Recognize objects in images
● Look for manufacturing defects in images
● Predict failures in equipment
● Select the products that a customer is most likely to want
● Select the support doc that fixes a customer issue



"""
Build a simple linear regression model.
Note the model has a shape of (1) for its input layer, it will expect a 
single int64 value.
"""

input_layer = keras.layers.Input(shape=(1), dtype=tf.float32, name='x')

output_layer= keras.layers.Dense(1)(input_layer)

model = keras.Model(input_layer, output_layer)

model.compile(optimizer=tf.optimizers.Adam(), loss='mean_absolute_error')

model.summary()



tfx_bsl.public.beam.RunInference

Features

● Batches inputs when possible
● Outputs a predictlog proto, includes input 
● Key forwarding
● Remote or Local mode
● Local mode, loads the model once and shares across 

threads



RunInference - Local model mode

<pull saved model file>
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Pre-processing choices

Dataflow

PCollection

(bounded or 
unbounded)

Source

Sink

Model

Pre-processing



"""
Build a simple linear regression model.
Note the model has a shape of (1) for its input layer, it will expect a 
single int64 value.
"""

input_layer = keras.layers.Input(shape=(1), dtype=tf.float32, name='x')

output_layer= keras.layers.Dense(1)(input_layer)

model = keras.Model(input_layer, output_layer)

model.compile(optimizer=tf.optimizers.Adam(), loss='mean_absolute_error')

model.summary()



Model

The serving signature

tf.function()

ReadFromTFRecord
Transform

Apache Beam 
RunInference Transform

Serialized 
tf.example

TFRecord



Change the input to the model

@tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string , name='examples')])

def serve_tf_examples_fn(serialized_tf_examples):

    """Returns the output to be used in the serving signature."""

    features = tf.io.parse_example(serialized_tf_examples, RAW_DATA_PREDICT_SPEC)

    return model(features, training=False)

signature = {'serving_default': serve_tf_examples_fn}

tf.keras.models.save_model(model, save_model_dir_multiply, signatures=signature)



Notebook



Metadata - Attaching a key
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Metadata - Attaching a key

Dataflow
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Metadata - Attaching a key

Dataflow

● PCollection[bytes] -> PCollection[PredictionLog]
● PCollection[Tuple[K, bytes]] -> PCollection[ Tuple[K, PredictionLog]]

● PCollection[Example] -> PCollection[PredictionLog]
● PCollection[Tuple[K, Example]] -> PCollection[ Tuple[K, PredictionLog]]
● PCollection[Tuple[K, SequenceExample]] -> PCollection[ Tuple[K, PredictionLog]]



Notebook



Live Experimentation

● Model metrics are usually not exact 
matches for business objectives

● Example: Recommender systems
○ Model trained on clicks
○ Business wants to maximize profit
○ Example: Different products have 

different profit margins



Live Experimentation - A/B Testing

● Users are divided into two groups
● Users are randomly routed to different 

models in environment
● You gather business results from each 

model to see which one is performing 
better

Client

Application

Model A Model B



Multiple Models

y=5x y=10x



Multiple Models

Dataflow

Key - Value

Key - Value +
Prediction

Raw Data

Key - Value
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Model A Model B



Cascade Ensembles: Model > Model

Language 
Understanding

Product
Recommender



Cascade Ensembles: Model > Model
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Sentiment 
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Product
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Sequential model

Dataflow

Key - Value

Key - Value +
Prediction

Raw Data

Key - Value +
Prediction
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GPUs



● Execution graph created from code 

● Use CPU for stages are more suited for 
CPU based processing

● Leverage GPU to accelerate specific stages 
of the pipeline

Logical Pipeline View  - The need for 
GPUs



Attach GPU to your Dataflow workers to accelerate your 
pipelines

● Select from a range of GPU types (NVIDIA T4, V100, 
P100, and P4) for your job. Up to 8 GPUs per 
instance

● Automatic provisioning/ deprovisioning 

● Simplify application lifecycle with support for Docker 
containers

Dataflow GPU



Dataflow GPU: Architecture View

Dataflow Worker

Container Image
(SDK Worker Container)

GPU drivers
Dataflow Runner Process

User’s Beam code
ML Framework (TensorFlow, Pytorch)
NVIDIA CUDA-X libraries 
NVIDIA CUDA Toolkit
Apache Beam SDK



Thank you!


