
ML Inference at scale, easy as
learning your 5 X table!

Robert Crowe Developer Engineer TFX

Reza Rokni Developer Advocate Google Dataflow

Google

https://2021.beamsummit.org/schedule/#abs-c01l
https://2021.beamsummit.org/schedule/#abs-c01l

ML Inference at scale, easy as learning
your 5 times table, with TFX and Apache

Beam!

https://2021.beamsummit.org/schedule/#abs-c01l
https://2021.beamsummit.org/schedule/#abs-c01l
https://2021.beamsummit.org/schedule/#abs-c01l

Production Machine Learning
Agenda

1. Overview of RunInference and its place within TFX ML-OPS

2. Doing our 5 times table, with Apache Beam and RunInference

3. Pre and Post-processing

4. Branching and sequential inference pipelines

5. GPUs with the Dataflow Runner

TFX / RunInference-
Quick Overview

Machine Learning & Pipelines
ML development falls naturally into a series of tasks

Data
Validation

Feature
Engineering

Train
Model

Data
Ingestion

Validate
Model

Push If
Good

Serve
Model

Libraries

Components

Bulk InferenceInfra ValidatorTuner

What do we mean by portability?
TFX runs just about anywhere

Vertex AI

Flink Dataflow

Execution

Orchestration

Processing

Why is portability important?

● Execution environments

● Orchestrators

● Distributed processing frameworks

● Languages (to some extent)

● Teams / Business units

Meet the user’s needs, instead of requiring them to meet yours

Hello TFX

Bulk InferenceExampleGen

BATCH INFERENCE
DATA (UNLABELED)

Infra
Validator

Component: BulkInferrer

Validation
Outcome

BulkInferrer

Evaluator

Pusher
PusherInference

Result

Block batch inference on a successful model validation.
Choose the inference examples from example gen's output.
Choose the signatures and tags of inference model.

Inputs and Outputs

Configuration Options

ExampleGen

Unlabelled
examples

Trainer

Model

Inference Result

Contains features and predictions.

bulk_inferrer = BulkInferrer(
 examples=inference_example_gen.outputs[‘examples’],
 model_export=trainer.outputs[‘output’],
 model_blessing=evaluator.outputs[‘blessing’],
 data_spec=bulk_inferrer_pb2.DataSpec(
 example_splits=[‘unlabelled’]),
 model_spec=bulk_inferrer_pb2.ModelSpec())

Configuration

BulkInferrer & RunInference

TFX components run data processing in Beam pipelines

● BulkInferrer runs inference on Beam using RunInference
● RunInference included in tensorflow/tfx-bsl
● RunInference can also be used in pure Beam

○ Beam pipelines with no TFX
○ Beam pipelines inside TFX custom components

A simple model

What can you do with a model?

Imagine trying to do these without a model!

● Speech to text
● Text to customer sentiment
● Recognize objects in images
● Look for manufacturing defects in images
● Predict failures in equipment
● Select the products that a customer is most likely to want
● Select the support doc that fixes a customer issue

"""
Build a simple linear regression model.
Note the model has a shape of (1) for its input layer, it will expect a
single int64 value.
"""

input_layer = keras.layers.Input(shape=(1), dtype=tf.float32, name='x')

output_layer= keras.layers.Dense(1)(input_layer)

model = keras.Model(input_layer, output_layer)

model.compile(optimizer=tf.optimizers.Adam(), loss='mean_absolute_error')

model.summary()

tfx_bsl.public.beam.RunInference

Features

● Batches inputs when possible
● Outputs a predictlog proto, includes input
● Key forwarding
● Remote or Local mode
● Local mode, loads the model once and shares across

threads

RunInference - Local model mode

<pull saved model file>

Dataflow

Cloud
Storage

RunInference

PCollection

(bounded or
unbounded)

Source

Sink

Pre-processing choices

Dataflow

PCollection

(bounded or
unbounded)

Source

Sink

Model

Pre-processing

"""
Build a simple linear regression model.
Note the model has a shape of (1) for its input layer, it will expect a
single int64 value.
"""

input_layer = keras.layers.Input(shape=(1), dtype=tf.float32, name='x')

output_layer= keras.layers.Dense(1)(input_layer)

model = keras.Model(input_layer, output_layer)

model.compile(optimizer=tf.optimizers.Adam(), loss='mean_absolute_error')

model.summary()

Model

The serving signature

tf.function()

ReadFromTFRecord
Transform

Apache Beam
RunInference Transform

Serialized
tf.example

TFRecord

Change the input to the model

@tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string , name='examples')])

def serve_tf_examples_fn(serialized_tf_examples):

 """Returns the output to be used in the serving signature."""

 features = tf.io.parse_example(serialized_tf_examples, RAW_DATA_PREDICT_SPEC)

 return model(features, training=False)

signature = {'serving_default': serve_tf_examples_fn}

tf.keras.models.save_model(model, save_model_dir_multiply, signatures=signature)

Notebook

Metadata - Attaching a key

Dataflow

Value

Value +
Prediction

Metadata - Attaching a key

Dataflow

Key - Value

Key - Value +
Prediction

Metadata - Attaching a key

Dataflow

● PCollection[bytes] -> PCollection[PredictionLog]
● PCollection[Tuple[K, bytes]] -> PCollection[Tuple[K, PredictionLog]]

● PCollection[Example] -> PCollection[PredictionLog]
● PCollection[Tuple[K, Example]] -> PCollection[Tuple[K, PredictionLog]]
● PCollection[Tuple[K, SequenceExample]] -> PCollection[Tuple[K, PredictionLog]]

Notebook

Live Experimentation

● Model metrics are usually not exact
matches for business objectives

● Example: Recommender systems
○ Model trained on clicks
○ Business wants to maximize profit
○ Example: Different products have

different profit margins

Live Experimentation - A/B Testing

● Users are divided into two groups
● Users are randomly routed to different

models in environment
● You gather business results from each

model to see which one is performing
better

Client

Application

Model A Model B

Multiple Models

y=5x y=10x

Multiple Models

Dataflow

Key - Value

Key - Value +
Prediction

Raw Data

Key - Value

Key - Value +
Prediction

Model A Model B

Cascade Ensembles: Model > Model

Language
Understanding

Product
Recommender

Cascade Ensembles: Model > Model

Speech to TextVoice
Sentiment
Analysis

Language
Understanding

Product
Recommender

Text

Support
Recommender

Logs

Text to Speech

Response

Sequential model

Dataflow

Key - Value

Key - Value +
Prediction

Raw Data

Key - Value +
Prediction

Model A Model B

GPUs

● Execution graph created from code

● Use CPU for stages are more suited for
CPU based processing

● Leverage GPU to accelerate specific stages
of the pipeline

Logical Pipeline View - The need for
GPUs

Attach GPU to your Dataflow workers to accelerate your
pipelines

● Select from a range of GPU types (NVIDIA T4, V100,
P100, and P4) for your job. Up to 8 GPUs per
instance

● Automatic provisioning/ deprovisioning

● Simplify application lifecycle with support for Docker
containers

Dataflow GPU

Dataflow GPU: Architecture View

Dataflow Worker

Container Image
(SDK Worker Container)

GPU drivers
Dataflow Runner Process

User’s Beam code
ML Framework (TensorFlow, Pytorch)
NVIDIA CUDA-X libraries
NVIDIA CUDA Toolkit
Apache Beam SDK

Thank you!

