
Austin, 2022

Apache Beam Backend for
Scalding
Navin Viswanath
Software Engineer, Twitter Inc.

Austin, 2022

Outline

● Data processing at Twitter
● Quick introduction to Scalding
● Beam backend for Scalding
● Current state and future work

2

Scale of batch
data
processing at
Twitter

Around 50k+ batch data jobs
run every day

Process 200+ petabytes of
data daily

Multiple Hadoop clusters in
two datacenters

50,000+ nodes across
Hadoop clusters

3

Austin, 2022

Migrating batch pipelines

● Google Cloud Dataflow chosen for batch and streaming pipelines
● Why Dataflow?

○ Beam - unified API for batch and stream processing
○ Fully managed service
○ Leverage technologies in the Google cloud ecosystem
○ Elasticity

● Alternative: Hadoop on GCP

4

Austin, 2022

Migrating batch pipelines

● Two alternatives for pipeline owners:
○ Rewrite batch jobs to Apache Beam and deploy them on Dataflow
○ “Lift-and-shift” existing pipelines to Hadoop on GCP

● Manual rewrite is time-consuming : not practical at Twitter’s scale
● Lift-and-shift is straightforward : point Scalding job to a Hadoop cluster on

GCP, but we are still running MapReduce under the covers
● The Beam backend for Scalding gives us the best of both worlds

5

Austin, 2022

What is Scalding?

● Scala library for Hadoop MapReduce
● Built on top of Cascading, a high level Java API that abstracts details of

MapReduce
● Allows expressing computations on data as functional transformations such

as map, filter, and reduce
● Computations are represented as an abstract syntax tree and submitted to a

“backend”

6

Austin, 2022

Scalding API

● Central abstraction is a TypedPipe - a distributed collection
● Data processing operations are implemented as transformations on a

TypedPipe
○ map/flatMap
○ filter
○ groupBy
○ join

● Sources and sinks can be implemented by extending TypedSource and
TypedSink

7

Austin, 2022 8

Word count in Scalding
 TypedPipe.from(TextLine(args("input")))
 .flatMap { line => tokenize(line) }
 .groupBy { word => word } // use each word for a key
 .size // in each group, get the size
 .write(TypedText.tsv[(String,Long)](args("output")))

 // Split a piece of text into words
 def tokenize(text: String): Array[String] = {

 // Lowercase each word and remove punctuation.
 text.toLowerCase.replaceAll("[^a-zA-Z0-9\\s]", "").split("\\s+")

 }

Austin, 2022

Scalding backends

● Scalding planner represents the user code as a DAG (AST)
● Each “sink” node in the DAG is a Write
● Optimizer optimizes a list of Writes
● The list of Writes is submitted to the backend
● There are currently 4 backends for Scalding:

○ Memory
○ Cascading
○ Spark
○ Beam

9

Austin, 2022

Dr. Scalding UI

10

Austin, 2022 11

Scalding backends

Optimizer

Mode

Austin, 2022 12

Scalding backends
trait Mode extends java.io.Serializable {

 def newWriter(): Writer

}

Trait Writer {
override def execute(conf: Config, writes: List[ToWrite[_]])(implicit

 cec: ExecutionContext

): CFuture[(Long, ExecutionCounters)]

}

Austin, 2022

Implementing a Scalding
backend
● Design an AST representation for the processing engine (BeamOp)
● Implement a function Function[TypedPipe, BeamOp]
● Implement a Resolver to map TypedPipe sources and sinks to Beam sources

and sinks (Resolver[TypedSource, BeamSource] and Resolver[TypedSink,
BeamSink])

● Implement a writer (BeamWriter)

13

val a = TypedPipe.from(Seq(1,2,3))

val b = TypedPipe.from(Seq(4,5,6))

val union = a ++ b

union.write(TypedText.tsv[Long](args(

"output")))

14

Write

MergedPipe

IterablePipe IterablePipe

Scalding DAG

Austin, 2022

Scalding Beam backend

15

final case class MergedBeamOp[A](first: BeamOp[A], second: BeamOp[A], tail: Seq[BeamOp[A]])
 extends BeamOp[A] {

override def run(pipeline: Pipeline): PCollection[_ <: A] = {
 val collections = PCollectionList
 .of(first.run(pipeline))
 .and(second.run(pipeline))
 .and(tail.map(op => op.run(pipeline)))
 collections.apply(Flatten.pCollections[A]())
 }

}

Austin, 2022

Scalding Beam backend

16

case (m @ MergedTypedPipe(_, _), rec) =>
 OptimizationRules.unrollMerge(m) match {
 case Nil => rec(EmptyTypedPipe)
 case single :: Nil => rec(single)
 case first :: second :: tail => MergedBeamOp(rec(first),
rec(second), tail.map(rec(_)))
 }

Austin, 2022

Current state and future work

● Current state
○ We’re testing this backend on production pipelines at Twitter
○ We have established correctness

● Future work
○ Distributed cache
○ MapReduce counters
○ Improve debuggability
○ Performance improvements

17

Austin, 2022

Thank you!

18

Twitter Careers
Twitter Engineering Blog

Twitter Open Source

https://careers.twitter.com/
https://blog.twitter.com/engineering/en_us
https://opensource.twitter.dev/

Austin, 2022

Questions?

19

https://github.com/twitter/scalding

https://github.com/twitter/scalding

Austin, 2022

Section title

20

