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Who is BlueVoyant? 
Who Are We?
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Third Party Risk Detection 
What is it and Why is it Hard?
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What is Third Party Risk?

First Party Risk – hack the 
bank’s central servers

Third Party Risk – Don't attack 
the bank directly; go after one 
of their suppliers or a smaller 
company they are buying 
(target the weakest link)

https://xkcd.com/2347/ 

https://xkcd.com/2347/
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What is Third Party Risk?
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What is our product?

MyCompany™

MyCompany’s 
vendors

“One of your vendors has a remote office that didn't patch the latest VPN server vulnerability and has remote 
access exposed.  We opened a case, and worked with them to patch the issue and close the port.”

Smart People™

Our Backend
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Big Moving Targets
● Lots of data

○ Some streaming, some batch
○ Up to 11M events per second incoming

● Disparate data
○ Different formats, semantics, delivery
○ Data arrives late, changes 

schema/semantics, changes in volume
● Dynamic footprints

○ Shared assets, cloud-hosted assets
○ Mergers/acquisitions, growth, reduction, 

adoption of third-party services/resources
● Dynamic threat landscape

○ Emerging vulnerabilities 
■ (or knowledge of them)

○ Emerging attack vectors



Austin, 2022

Important Needles, Big Haystack

Data points processed 
per second

Number of findings generated 
by pipeline

Number of findings that meet 
notification threshold

Number of findings that are 
communicated to vendor 
(after removal of false positives, 
footprint or mitigating control)

~4

~5-8

~100

11M



Austin, 2022

Solution: Prophet
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Parse and Index First – Ask 
Questions Later!

Any analytic we derive today may be wrong tomorrow, all we know is what was observed
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Why Beam? 
Why not <insert your favorite buzzword>?
● Batch and strEAM data sources ;-)

● Why not SQL on some backend?
○ We tried it!

■ SQL is limiting, and quickly gets hard to maintain
■ Latency XOR throughput

○ Real code (not just SQL), high-level types, caches, hit APIs
■ Workflows (not just reading/writing)

● Adds high throughput to a low-latency backend*
○ *With some effort (see: rest of this talk)

● Manage business logic, not virtual machines + tuning params (sorry spark)
○ Beam + Google Dataflow :chefs-kiss:
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Pushed 
Data

Pulled 
Data

Collected 
Data

Asset(s)
(ip or domain)

Event or 
observation 

timestamp(s)

Beam as a Data Model Layer
CyberDatum

Data 
Warehouse 
(BigTable)

● Schema validation

● Semantic validation

● Normalize datatypes

● High-level datatypes

● Column relations

● Trigger collection 

jobs or API requests

APIs
s3/GCS

Kafka
BQ
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Beam as an Analytic Engine

HealthCareCompany uses DataManagementCompany, 
which has a bunch of their personal health data (HIPAA) 
in a publicly readable bucket!

SaasCompany uses HRCompany that runs a mail 
server with known remote code vulnerabilites! 

BigCompany recently acquired SmallCompany, who 
was actively targeted by known malicious botnet servers 
yesterday!

…data for the 
latest footprints…

Every day, pull…

…and apply our 
latest analytics…

…to identify 
nuggets of risk!

Like having a billion human analysts running daily queries 
and analysis on the results
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Beam Challenges

CyberDatum

Pushed 
Data

Pulled 
Data

Collected 
Data

Risk

Analytics

Footprints

Data 
Warehouse
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Beam Challenges

CyberDatum

Pushed 
Data

Pulled 
Data

Collected 
Data

Risk

Analytics

Footprints

Data 
Warehouse 
(BigTable)Ingesting and 

indexing up to 11M 
records/second

Running billions of 
queries every day in 
~1 hour

Running analytic 
processing on 
billions of results

1

2

3
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Ingesting and indexing up to 
11M records/second
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Beam Challenges

CyberDatum

Pushed 
Data

Pulled 
Data

Collected 
Data

Risk

Analytics

Footprints

Data 
Warehouse 
(BigTable)Ingesting and 

indexing up to 11M 
records/second1
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A Typical Datasource

server_ip: 1.2.3.4
date: 2022-07-18
port: 3389
banner: “Windows 2000, 
RDP 4.0 …”
…

Record:

BigTable
(1.2.3.4, 2022-07-18)
  -> { port: 3389, … }

BigTable row:

- Manageable data volume for Dataflow and BigTable
- Batch jobs (mostly)
- Single index (one BigTable row per record)

- Dataflow + BigTable is an efficient and cost effective solution 🎉

Beam
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We’d need to write at least ~25 M rows/s to BigTable
- Would need a very large BT cluster, too expensive

The Problem Datasource

client_ip: 1.2.3.4
qname: badguyz.net
answer_ip: 5.6.7.8
timestamp: 2020-12-09
…

- High-volume
- p50: 2M records/s, p95: 11 M records/s

- Continuous stream
- Multiple indexable fields (many BigTable rows per record)

(1.2.3.4, 2020-12-09) 

(badguyz.net, 2020-12-09) 

(5.6.7.8, 2020-12-09) 

Record: Queryable as:
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- Improves BigTable write throughput
- But shuffle is expensive, need many dataflow workers to finish in time

How do we reduce costs?

(1.2.3.4, 2020-12-09T01:00:01) -> [record-A]
+

(1.2.3.4, 2020-12-09T01:00:59) -> [record-B]
=

(1.2.3.4, 2020-12-09T01:00     ) -> [record-A, record-B]

Bottleneck: BigTable key creation. 
- Goal: reduce the number of keys we write to BigTable. 
- group records into timestamp bins, and write each bin to an individual row:
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Any problem in computer science can be solved 
with another level of indirection.                    

(attributed to David Wheeler).

http://bwlampson.site/Slides/TuringLecture.htm
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Records on Google Cloud Storage, indices in BigTable

(1.2.3.4, 2022-07-18) 
-> [records1.avro, record 0, bit_qr: 1, …]

 

gs://data-sponge/records1.avro BigTable rows:
Record 0 ===
client_ip: 1.2.3.4
qname: badguyz.net
timestamp: 2022-07-18
…
Record 1 ===
client_ip: 3.4.5.6
qname: zombo.com
timestamp: 1999-11-02
….
Record 2 ===
….

(badguyz.net, 2022-07-18) 
-> [records1.avro, record 0, bit_qr: 1, …]

 

(zombo.com, 1999-11-02) 
-> [records1.avro, record 1, bit_qr: 0, …]
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Writes

Data 
stream

~1.5 - 15 M 
records/s

Avro on GCS
(stores full 
records)

Spark 
Streaming 
(writes records)

... Dataflow 
Batch Jobs 
(create indices)

BigTable
(stores GCS 
urls and 
offsets)

Runs hourly, 
indexing 
previous hour’s 
data

records indices

50-150 
nodes 
(depending 
on demand)
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Reads

Avro on GCS
(stores full 
records)

BigTable
(stores GCS urls, 
offsets, …)

“badguyz.net” on 2022-07-18 ?

[(gs://bkt/1.avro, lines 2,3, qr:1), 
(gs://bkt/2.avro, lines 5,8, qr: 0), …]

gs://bkt/1.avro … ?

[ (client_ip: 1.2.3.4, qname: badguyz.net, timestamp: 2022-07-18), …]

Filter files to fetch

Scan through files to relevant records

Client
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“Local Group-By”
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“Local Group-By”

(a: 1), (a: 2),
(b: 1), (b: 2)

(a: 3), (a: 4),
(b: 3), (c: 1)

Classic map-reduce shuffle:

(a: [1, 2, 3, 4]) (b: [1, 2, 3]),
(c: [1])

All-to-all communication :(

21

1 2
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“Local Group-By”

(a: 1), (a: 2),
(b: 1), (b: 2)

(a: 3), (a: 4),
(b: 3), (c: 1)

Local “shuffle”:

(a: [1, 2]),
(b: [1, 2])

(a: [3, 4]),
(b: [3])
(c: [1])

No network traffic during “shuffle” :D

We don’t care about getting all the “a”s on one worker, we just want fewer 
key-value pairs. Avoids expensive ($ and time) shuffles.

1

1

2

2
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Local Group-By as a Beam DoFn
// Each DoFn gets its own local set of groups.
HashMap<String, List<RecordT>> groups;
public void startBundle() {
   groups = new HashMap<>();
}
public void processElement(@Element KV<String, RecordT> element, …) {
   groups.compute(element.getKey(), (key, group) -> {
       if (group == null) group = new ArrayList<RecordT>();
       group.append(element.getValue());
       return group;
   });
}
public void finishBundle(FinishBundleContext c) {
   for (KV<String, List<RecordT>> group : groups) {
       c.output(group);
   }
}
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Local Group-By as Beam DoFns
// Simple way to get better grouping: Lather, rinse, repeat
PCollection<KV<String, List<RecordT>>> locallyGroupedRecords =
   records
       .apply("Locally group 1", ParDo.of(new LocalGroupBy()))
       .apply("Locally group 2", ParDo.of(new LocalGroupBy()))
       .apply("Locally group 3", ParDo.of(new LocalGroupBy()));

Gives more complete grouping per worker at the cost of more CPU time
- still better than a broad shuffle. 

Can we group across DoFn threads as well?
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Local Group-By as a Beam DoFn
// All DoFns on a worker share a single groups map; here lie concurrency headaches...
static ConcurrentHashMap<String, List<RecordT>> groups = new ConcurrentHashMap();
static final Object mutex = new Object();
static int numActiveBundles = 0;

public void startBundle() {
   synchronized (mutex) {
       numActiveBundles++;
   }
}

public void processElement(@Element KV<String, RecordT> element, …) {
   // Same as before, add our element to the map.
}

public void finishBundle(FinishBundleContext c) {
   synchronized (mutex) {
       if (numActiveBundles-- > 0) {
           mutex.wait(); // DANGER ZONE: what if we never make progress here?
       } else {
           for (KV<String, List<RecordT>> group : groups) {
               c.output(group);
           }
           groups = new ConcurrentHashMap();
           mutex.notifyAll();
       }
   }
} Better grouping, but much trickier code and dubious benefits
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Local Group-By as a Spark Transform

val groupedRecords = myRecords
 .mapPartitions(partitionIt: Iterator[(String, RecordT)] => {
   val groups: HashMap[String, ArrayList[RecordT]] = new HashMap()
   partitionIt.forEach {
     case (key, record) => {
       val curGroup = groups.getOrElseUpdate(key, new ArrayList())
       curGroup.add(record)
     }
   }
   groups.toIterable
})

Spark provides an API for processing all of the elements of a single partition as 
a single iterable:

Can/should we add this API to Beam? Pros/Cons?
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Local Group-By as a Spark Transform

val groupedRecords = myRecords
 .mapPartitions(partitionIt: Iterator[(String, RecordT)] => {
   val groups: HashMap[String, ArrayList[RecordT]] = new HashMap()
   partitionIt.forEach {
     case (key, record) => {
       val curGroup = groups.getOrElseUpdate(key, new ArrayList())
       curGroup.add(record)
     }
   }
   groups.toIterable
})

Spark provides an API for processing all of the elements of a single partition as 
a single iterable:

Can/should we add this API to Beam? Pros/Cons?

startBundle

processElement

finishBundle
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Running billions of queries 
every day in ~1 hour
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Beam Challenges

CyberDatum

Pushed 
Data

Pulled 
Data

Collected 
Data

Risk

Analytics

Footprints

Data 
Warehouse 
(BigTable)

Running billions of 
queries every day in 
~1 hour2
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Amdahl’s Law (0)
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Inputs (1) 
What’s a CIDR?

8.8.8.8/32 -> [8.8.8.8]

1.2.3.4/16 -> [1.2.0.0, 1.2.0.1, 1.2.0.2, …, 1.2.255.255]

Inputs are compressed - don’t want long tails on large ranges. 

FanOut / Reshuffle at each of 8, 16, 24, 32 to distribute this

 “decompression”. We furthermore need to convolute wrt time.
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Naive Approach (2)
After exploding our CIDRs, we’re left with:

~6.3 Billion Queries and hope for the best?

Translates to:

2048 Cores

~4-6 Hours of Runtime

Lots of OOMs / retries / vacuous queries (no results)
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Wait a Minute… (3)
~6.3 Billion IPv4 addresses!?

There’s only ~3.7 Billion publicly addressable IP addresses

Pigeonhole Principle?

GBK Confirms this… But that’s still a lot of queries!

OK - queries are cut in half, but what about our OOMs/Retries/Vacuous Queries?
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Problem Queries (4)
Vacuous Queries:

∃? -> Nope

Still costs time to answer that question

OOMs:

∃? -> Very Much Yes

Opposite problem - too much data per worker
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Secondary Index (5)
SELECT ip, COUNT(*) FROM secondary_index

WHERE start_time <= timestamp 

AND timestamp <= end_time GROUP BY ip

Now we know what IPs we have data for 

and how much data we have for each.

Secondary Index is built by utilizing DAG structure of Beam - just tack on an 
additional operation to write IP/Timestamp to your favorite RDBMS as a 
side-effect of otherwise running your pipeline.
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Do You Exist? (6) 
Bitmaps

Naive: 2^32 - 1 = ~536MB

RoaringBitmap: ~222 MB

Computed via custom CombineFn

Broadcast via Side Input and do an In-memory Filter 

~6.3 Billion -> ~1.5 Billion 

This is pre-GBK/Dedupe
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Solving OOMs (7)
Not only do we have proof of existence, but we have <IP, Count>

Assume Uniform Distribution of IP over time range

We can now partition/split keyspace of a range accordingly

 (1.2.3.4, [2022-04-01, 2022-05-01], 30)

->  ~30 of (1.2.3.4, [2022-04-01, 2022-04-02], 1),

  (1.2.3.4, [2022-04-02, 2022-04-03], 1), …

  (1.2.3.4, [2022-04-30, 2022-05-01], 1)
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Slice N Dice (8)
Further split the queries according to Bigtable’s sampleRowKeys()

Ensure queries are sympathetic to the underlying storage layer.

Same process as before, but takes tablet-boundaries into account

BT RowKeys are 4096 bytes, lexicographically ordered. 

We store IPv4 as Hex, to enable scanning not just single IPs, but CIDR ranges too.

After Bitmap/Split/Dedupe/GBK: 6.3B -> 1.5B -> ~450MM Scans
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Running the Queries (9)
Batch ~450MM Scans into collections of 256 each

 ~1.8MM “Scan Groups”

What happens when steps fused to scans fail part way through?

Entire step needs to be retried. Ouch!

Shuffle is your friend: “Fusion Break”

Reshuffle.viaRandomKey() will checkpoint you data preventing rescanning of 
Bigtable/External Service and recalculating scans.
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MultiThreading! (10)
Beam model says you “don’t have to think about this multithreading” but you may 
want to anyway.

Scio has some great examples if you speak Scala

Think of DoFn’s as individual Microservices

Beam handles networking/statefulset/message passing

What it doesn’t do is benchmarking - you’ll be spending a lot of time here.

Tip: Start with a fixed number of threads
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End Results (11)
Cores:

2048 -> 348 cores (could go lower but we like the headroom)

Runtime:

~4-6 hours -> ~1.5 hours (end-to-end)

MGMT:

🫤 -> 🤑
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Running analytic processing 
on billions of results
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Beam Challenges

CyberDatum

Pushed 
Data

Pulled 
Data

Collected 
Data

Risk

Analytics

Footprints

Data 
Warehouse 
(BigTable)

Running analytic 
processing on 
billions of results3
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Processing the Records
○ Pull out observations that are attributed to our footprints

○ Enrich observations with whatever the current threat landscape looks like 

○ Determine what these observations and enrichments are telling us

■ Do we even care about every single observation?

■ Can we determine who/what may be vulnerable? Who is running out of date code?

Bigtable
Text Records

700M+ Daily

- Bigquery
- Postgres
- /dev/null

20B+ Daily

Enrichments
- Fingerprints

- Regexes
- Analytic Workflows

Analysis
How to interpret the 

records?

Beam
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Enrichment

- Need to detect Software types and versions
- Typical solution is plain regex - but that’s too slow for this amount of data
- Running a database of regexes against a database of outputs is an N^2 shuffle
- Instead, we can run a compiled regex database scanner against each element (no shuffle!)

- Maintained and curated to keep up with the changing landscape

SSH-2.0-OpenSSH_7.4-hpn14v5 
OpenBSD-openssh-portable-7.4

Seen: 6/7/22 13:55:34 UTC

Type: OpenSSH 
Version: 7.4

cpe:2.3:a:openbsd:openssh:7.4

What is this 
thing?

- Problem
- High amount of data overlap = lots of unnecessary cpu-heavy processing
- GroupByKey to the rescue! We only need to process “unique records” once

- 270M -> 6M records actually require processing

...Bigtable
Text Records

700M+ Daily
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Analysis

- How to determine what to actually output? What is important?
- Could use Side Input queries from BQ 

- Inefficient/Expensive to join records against large regex sets 
- Difficult to handle multi-CPE CVEs (Firefox.101 OR Firefox.102) AND (Ubuntu-20.04 OR Ubuntu-20.10)

- Static prebuilt CVE mapping dictionaries
- Combination of analyst fingerprinting and processed NIST CVE rulesets
- Determine which CVEs apply to found CPEs
- Determine how old the detected versions are
- Very fast lookups in memory

Vulnerable?
Up to date? …14 CVEs

Version 7.4 from 2016 
Newer versions exist

... ...Type: OpenSSH 
Version: 7.4

cpe:2.3:a:openbsd:openssh:7.4

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

14 CVEs

Version 7.4 from 2016 
Newer versions exist
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Output

- Finally we have output… too much output
- 1 record => multiple software ids => potentially 100+ CVEs each

- Extrapolated across millions of assets and footprints
- Lots of redundant and costly output data! 

- Daily 20B records/6TB of highly redundant data
- $$$ and downstream sadness

-

... Bigquery

- GroupByKey to the rescue again

-

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

…14 CVEs

Version 7.4 from 2016 
Newer versions exist

14 CVEs

Version 7.4 from 2016 
Newer versions exist
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Normalization via GBK

Vendor ABC 6/7/22 13:55:34 UTCSSH-2.0-OpenSSH_7.4-hpn14v5 
OpenBSD-openssh-portable-7.4 cpe:2.3:a:openbsd:openssh:7.4 CVE-2021-41617

Let’s group by the record text, emit “normalized” records, and dedupe what we can.
This record… but billions more…

Vendor ABC 6/7/22 13:55:34 UTC SSH-2.0-OpenSSH_7.4-hpn14v5 
OpenBSD-openssh-portable-7.4

6/7/22 SSH-2.0-OpenSSH_7.4-hpn14v5 
OpenBSD-openssh-portable-7.4 cpe:2.3:a:openbsd:openssh:7.4

cpe:2.3:a:openbsd:openssh:7.4 CVE-2021-41617

Using GBK and Beam Distinct transforms:  20B records (6TB) realized data => 3 datasets at 30GB total
● Also! The normalized data can be used as “ground truth” datasets now, all as a side effect of 

trying to save time and money

6/7/22 
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Wrap up
● Before-Beam: many disparate processes with different stacks

○ Anywhere from 1-10 hours to process individually 
○ Complexity of maintenance
○ Limited to SQL or cross-platform chaos

● The Beam Way - all data processed within a single integrated codebase
○ 1hr process to generate the same outputs (and in cheaper/efficient ways)
○ Only one code base and architecture now :D
○ Ad-hoc analysis, end-to-end A/B testing
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Beam Questions and Feature 
Requests
● Controlling bundle sizes? (GroupIntoBatches incurs shuffle)
● Operations on a bundle or all bundles local to a single worker?
● Splittable DoFn for querying BigTable where results may have long tails?
● Fusion break – can we do it without a shuffle?
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