How to break Wordle with
Beam and BigQuery

INigo San Jose Visiers
Software Engineer @ Google

Agenda

e What, why and how?
e Solving Wordle
e Conclusions

=A Austin, 2022 2
M M

e The what and what not
e The why
e The how

MMMMMM

What and what not

e We are going to compute all* three word combinations and score them
e We care about the average result over all possible answers
e This is not a Wordle Solver, but an analysis

e We aim for best success ratio, not least attempts

=A Austin, 2022 4
M M

Worlde Solver by 3BluelBrown

Best opener: CRANE

.

Austin, 2022

http://www.youtube.com/watch?v=v68zYyaEmEA

Why?

=A Austin, 2022 6
M M

Why?

=A Austin, 2022 7
M M

Why?

e Thisis a good example of divide & conquer

e |t shows how to prepare our data to speed up our analysis

=A Austin, 2022 8
M M

Why?

e Thisis a good example of divide & conquer
e |t shows how to prepare our data to speed up our analysis

e | was bored and needed an excuse to stop working

=A Austin, 2022 9
M M

How?

e Since this is a highly parallelizable task, Beam is a good fit

e We don't know enough about the end result data, we need something to
analyze

e BigQuery

=A Austin, 2022 10
M M

Solving
Wordle

Problem statement
The Beam Side
The BigQuery Side

1

Problem Statement

I T Austin, 2022

12

Problem Statement - Space calculation

e Wordle allows ~13000 words to be played
e That's 2.182 x 10"? possible 3-word combinations

e We have to be smarter than this

=A Austin, 2022 13
M M

Problem Statement - Reducing the space

1 - Filter words with duplicate letters HELLOQ LOGICO

2 - Only combine words with no common LOGIC, GREAT €) LOGIC, HANDY ()
letters

3 - Remove duplicates LOGIC, HANDY Q HANDY, LOGIC Q

=A Austin, 2022 14
M M

Problem Statement - Benefits

1. From 2 Trillion combinations, we go down to 144 Million
(~15250 times less)

2. Calculating a word's score is faster

3. Combining scores is commutative and associative

=A Austin, 2022 15
M M

The Beam side

I T Austin, 2022

16

The Beam Side - Planning the pipeline

Read words

Filter words with duplicate letters
Calculate a word's score

Join the words and scores

Filter Duplicates

Write to BigQuery

=A Austin, 2022 17
M M

The Beam Side - Reading, Filtering & Scoring

Read Other Words
Input

Calculate Word's
score

=A Austin, 2022 18
M M

The Beam Side - Reading, Filtering & Scoring

Read Answers Read Other Words

def single letter(word):

. s = set()
Side for 1 in word:
|npu't s.add(1l)
return len(s) == len(word)

Calculate Word's

score

=A Austin, 2022
M M

The Beam Side - Reading, Filtering & Scoring

<answerl,

answer2,
Side Filter
answerN> | |nput

<word1>

(word1,
score(word1, answer1) +

Calculate Word's score(word1, answer2) +
score
score(word1, answerN))

=A Austin, 2022 20
MM

The Beam Side - Reading, Filtering & Scoring

Read Answers Read Other Words

class WordleRow(DoFn):
def process(self, word, answers):
greens, yellows = 0, 0
for answer in answers:
for i, letter in enumerate(word):
if letter == answer[il]:
greens += 1
elif letter in answer:
yellows += 1
yield self. format result(word, yellows, greens)

Side
Input

Calculate Word's

score def format result(self, word, yellows, greens):
return (word, yellows, greens, 1)

=A Austin, 2022 21
M M

The Beam Side - Reading, Filtering & Scoring

Read Answers Read Other Words

Iterate through all answers
class WordleRow(DoFn): for each element
def process(self, word, answers):
greens, yellows = 0, 0
for answer in answers:
for i, letter in enumerate(word):
if letter == answer[il]:
greens += 1
elif letter in answer:
yellows += 1
yield self. format result(word, yellows, greens)

Side
Input

Calculate Word's

score def format result(self, word, yellows, greens):
return (word, yellows, greens, 1)

\ Format as tuple

=A Austin, 2022 22
M M

The Beam Side - Combining words

Calculate Word's

score

<(word1, score1),

(word2, score?) | side <(wordY, scoreY)> <("wordY, word1", scoreY + scorel),

Input ("wordY, word2", scoreY + score2),

(wordN, scoreN)>
Join to
two-words N

("wordY, wordX", scoreY + scoreX),

=A Austin, 2022 23
M M

The Beam Side - Combining words

Calculate Word's
score
<(word1, score1),

(word2, score2) Side

<(wordY, scoreY)> <("wordY, word1", scoreY + score1),
Inpu‘t] "

7 J 7

(wordN, scoreN)>

Join to
("wordY, wordX", scoreY + scoreX),

>

two-words

=A Austin, 2022 24
M M

The Beam Side - Combining words

Calculate Word's

score

<(word1, score1),
(word2, score2) ISide <(wordX, scoreX)> <("wordY, word1", scoreY + score1),
nput " n

7 7 7

(wordN, scoreN)>
Join to

two-words ("wordY, wordX", scoreY + scoreX),

>

7

<"wordX, wordY" scoreX + scoreY>

Distinct

=A Austin, 2022 25
M M

The Beam Side - Combining words

Calculate Word's

score

<(word1, score1),
(word2, score2) ISide <(wordX, scoreX)> <("wordY, word1", scoreY + score1),
cee n ut n n

(wordN, scoreN)> P ’ ’ '

Join to

two-words ("wordY, wordX", scoreY + scoreX),

>

7
n n

7 J

Distinct

=A Austin, 2022 26
M M

The Beam Side - Combining words

Calculate Word's
score

<(word1, score1),
(word2, score2)
Join to two-words

& Distinct (wordN, scoreN)>

<("wordY, word1", scoreY + scorel)>

Join to three-words &

Dedup

=A Austin, 2022 27
M M

The Beam Side - Combining words

def combine words new(main, side words, size=3):
def letter intersection(main dict, side word):
for 1 in side word:
if 1 in main_dict:
return True
return False

def combine tuples(word, t1, t2):
return (word, t1[1] + t2[1], t1[2] + t2[2], t1[3] + t2[3])

main word = main[0]

main dict = {}

for 1 in main word:
main dict[l] =1

if:size == 3:

list words = main word.split(",")
for side in side words:

side word = side[0]

intersection = _letter_intersection(main_dict, side word)

if not intersection:

if size == 3:
words = list words + [side word]
new_word = ",".join(sorted(words))

elif main word > side word:

new word = f"{side word},{main word}"
else:

new word = f"{main word}, {side word}"
yield _combine tuples(new word, main, side)

AM Austin, 2022 28

T

=l

S U

The Beam Side - Combining words
def combine words_new(main, side words <-5~1—Ee~.l.\ Side input

def letter intersection(main dict, side word):

for 1 in side word
if 1in maindict:\
return True Do the words have common letters?

return False NO

def combine tuples(word, t1, t2):
return (word, t1[1] + t2[1], t1[2] + t2[2], t1[3] + t2[3])

main word = main[0]

main dict = {}

for 1 in main word:
main dict[l] =1

if:size == 3:
list words = main word.split(",")

for side in side words:
side word = side[0]
intersection = _letter_intersection(main_dict, side word)

if not intersection:

if size == 3:
words = list words + [side word]
NEW NOTSE Wy R e benE v ds)) Format the combination for deduping

elif main word > side word:
new word = f"{side word},{main word}"
else:
new word = f"{main word}, {side word}"
yield _combine tuples(new word, main, side) Sum the scores

AM Austin, 2022 29

T

=l

S U

The Beam Side - Writing to BigQuery

Calculate Word's Join to two-words Join to three-words &
score & Distinct Dedup

Format &
Write to BigQuery

=A Austin, 2022 30
MM

The BigQuery side

I T Austin, 2022

31

The BigQuery Side - How to analyze the data

=A Austin, 2022 32
M M

The BigQuery Side - How to analyze the data

e How do we score the combinations?

e What is our strategy?

=A Austin, 2022 33
M M

The BigQuery Side - How to analyze the data

e Greens are more valuable than yellows, but less when there are more

o With three words, greens are 1.75 times more valuable
o With two words, greens are 2.25 times more valuable

e We want the best three-word combination that performs well with two words
o Out of the best 3-combinations, we create a the possible two combinations and rank them

=A Austin, 2022 34
M M

The BigQuery Side - How to analyze the data

Row

b

O W OO N O AW N

words
gazed,jumby,snick
forby,muzak,pinch
bufty,glisk,moved
gauzy,voxel,wrick
shaky,vibex,would
chink pudgy,zaxes
dumpy,gawks,zilch
fable pudgy,shock
bludy,finch,gopak
bungy,major,whift
bowat,midgy,pluck
fuzed,thong,wispy
cings,judge,wormy
aping,botch,dumky
chimb,flunk,vaped

grind,spumy,thack

yellows
4096
4352
4352
4352
4352
4352
4352
4352
4352
4352
4352
4608
4608
4608
4608
4608

yellow_avg
1.7693304535637149
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.879913606911447
1.9904967602591792
1.9904967602591792
1.9904967602591792
1.9904967602591792
1.9904967602591792

greens green_avg
2505 1.08207343412527
2320 1.0021598272138228
2624 1.1334773218142549
2657 1.1477321814254859
2671 1.15377969762419
2419 1.0449244060475162
1916 0.827645788336933
2945 1.2721382289416847
2468 1.0660907127429806
2477 1.0699784017278617
2491 1.0760259179265659
2308 0.99697624190064793
2313 0.99913606911447084
2322 1.003023758099352
2325 1.0043196544276458
2837 1.2254859611231101

Austin, 2022

amount_words

W W W w W ww W ww W wwwww

total_words
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315
2315

35

The BigQuery Side - First Query and Results

1 SELECT
2 words,
3 greens,
4 yellows,
5 green_avg,
yellow_avg,
7 |.75 * green_avg + yellow_avg AS weighted_score
8 FROM
9 | ‘"table
3 WHERE
11 amount_words=2
12 ORDER BY 1.75 * green_avg + yellow_avg DESC

=A Austin, 2022 36
M M

The BigQuery Side - First Query and Results

greens,
yellows,
green_avg,
yellow_avg,

|.75 * green_avg + yellow_avg AS weighted_score

FROM

table

WHER

amount_words=3

)RDER BY 1.75 * green_avg + yellow_avg

P
U

e
(=]
=

words

-d

count,pride, shaly
coady,print,shule
crude,point,shaly
crine,poult,shady
coaly,pride,shunt
crudy,point,shale
chant,prude,soily
coude,print,shaly

douce print,shaly

O W 0O N O s W N

_

dault pricy,shone

—_
=y

dhole, pricy,saunt

—_
N

dhole,print,saucy

—_
w

drice,phony,sault

—_
E

count,drape,shily

=Y
w

crape,doily,shunt

—_
[}

count,drily,shape

Austin, 2022

greens
3588
3588
3588
3588
3588
3588
3588
3588
3584
3546
3546
3546
3546
3538
3538
3538

yellows
5434
5434
5434
5434
5434
5434
5434
5434
5438
5476
5476
5476
5476
5484
5484
5484

green_avg
1.5498920086393089
1.5498920086393089
1.5498920086393089
1.5498920086393089
1.5498920086393089
1.5498920086393089
1.5498920086393089
1.5498920086393089
1.5481641468682505
1.5317494600431965
1.5317494600431965
1.5317494600431965
1.5317494600431965
1.52829373650108
1.52829373650108
1.52829373650108

yellow_avg

2.3473002159827212
2.3473002159827212
2.3473002159827212
2.3473002159827212
2.3473002159827212
2.3473002159827212
2.3473002159827212
2.3473002159827212
2.3490280777537795
2.3654427645788338
2.3654427645788338
2.3654427645788338
2.3654427645788338
2.3688984881209505
2.3688984881209505
2.3688984881209505

weighted_score

5.0596112311015116
5.0596112311015116
5.0596112311015116
5.0596112311015116
5.0596112311015116
5.0596112311015116
5.0596112311015116
5.0596112311015116
5.0583153347732175
5.0460043196544273
5.0460043196544273
5.0460043196544273
5.0460043196544273
5.0434125269978409
5.0434125269978409
5.0434125269978409

37

The BigQuery Side - Analyzing first results

(@)
=h {

e Getting more than 5 weighted score seems good enough, but maybe there's a
difference in the two-word combinations

=A Austin, 2022 38
M M

The BigQuery Side - Analyzing first results

(@)
=h {

e Getting more than 5 weighted score seems good enough, but maybe there's a
difference in the two-word combinations

"count,pride,shaly”, 5.06

"jumps,kylix,vozhd", 2.66

=A Austin, 2022 39
M M

The BigQuery Side - Analyzing first results

(@)
=h {

e Getting more than 5 weighted score seems good enough, but maybe there's a
difference in the two-word combinations

"count,pride,shaly”, 5.06 — "count,pride”, ?
X‘ "Count,Shaly", ?

Jumpsiedbcrozhe2-66 "pride,shaly", ?

=A Austin, 2022)
M M

The BigQuery Side - The (heavy) query

| WITH double_words AS (
2 SELECT

ET(8)], *,', SPLIT(words,
SET(8)], °,', SPLIT(words,
SET(1)], *,', SPLIT(words,

) Split the 3-words

CONCAT(SPLIT(words,
] word_array,

words as three_words,
) yellow_avg + 1.75 * green_avg as three_score
) FROM

‘ table

2 YWHERE

3 amount_words = 32

4 AND yellow_avg + 1.75 * green_avg > 5

5)

7 SELECT
3 w.words,
) yellow_avg + 2.25 * green_avg weighted,
20 yellow_avg,
21 green_avg,
22 three_words,
23 three_score
24 FROM
25 table w,
26 double_words d,
27 UNNEST(d.word_array) words_2
28 WHERE
29 w.words IN (words_2)
AND amount_words = 2
ORDER BY
32 yellow_avg + 2.25 * green_avg DESC,
33 d.three_score DESQ

3=AM Austin, 2022 47

The BigQuery Side - The (heavy) query

| WITH double_words AS (
2 SELECT

3 ARR
4 Y[OFFSET(®)], *,', SPLIT(words, .

5 J[OFFSET(®)], *,', SPLIT(words,), i -
6 CONCAT (SPLIT(words, YIOFFSET(1)], *,', SPLIT(words,) Spllt the 3 WordS
7] word_array,

words as three_words,

) yellow_avg + 1.75 * green_avg as three_score

10 FROM

11 table

12 WHERE

13 amount_words = 2 .

14 AND yellow_avg + 1.75 * green_avg > 5 -— Filter

15)
16

17 SELECT

18 w.words,

19 yellow_avg + 2.25 * green_avg weighted,
20 yellow_avg,
21 green_avg,
22 three_words,
23 three_score
24 FROM
25 table w,
26 double_words d,
27 UNNEST(d.word_array) words_2
28 WHERE
29 w.words IN (words_2)

AND amount_words = 2

ORDER BY

32 yellow_avg + 2.25 * green_avg DESC,
33 | d.three_score DES]

3=AM Austin, 2022 42

The BigQuery Side - The results

Row

O W O N OOl W

words

weighted

yellow_avg

green_avg

three_words

three_score

prate,soily

crine,slaty

4.4116630669546435
4.4015118790496759

1.7719222462203024
1.7637149028077754

1.1732181425485961
1.172354211663067

dunch,prate,soily

crine,dough,slaty

5.0126349892008637
5.0060475161987039

soily,trade
crine,sault
briny,slate
brine,slaty
chore,saint
crone,saith
crate,shily
crate,shily
crate,shily
sadlytrine
pricy,slate
praty,slice
price,slaty

shily,trace

4.3880129589632828
4.350215982721382
4.3098272138228939
4.3098272138228939
4.2981641468682508
4.2960043196544273
4.286069114470842
4.286069114470842
4.286069114470842
4.2841252699784018
4.26695464362851
4.26695464362851
4.26695464362851
4.2666306695464362

1.8095032397408208
1.83585313174946
1.6963282937365012
1.6963282937365012
1.8362850971922247
1.838012958963283
1.723110151187905
1.723110151187905
1.723110151187905
1.7969762419006479
1.7127429805615551
1.7127429805615551
1.7127429805615551
1.7386609071274297

1.1460043196544276
1.1174946004319655
1.1615550755939525
1.1615550755939525
1.0941684665226783

1.09244060475162
1.1390928725701943
1.1390928725701943
1.1390928725701943
1.1053995680345572
1.1352051835853132
1.1352051835853132
1.1352051835853132
1.1235421166306696

Austin, 2022

punch,soilytrade
crine,podgy,sault
briny,pouch,slate
brine,pouch,slaty
chore,duply,saint
crone,duply,saith
crate pound,shily
bound,crate,shily
crate,mound,shily
pouch,sadlytrine
hound,pricy,slate
hound praty,slice
hound,price, slaty

pound,shilytrace

5.0022678185745137
5.0044276457883363

5.007991360691145

5.007991360691145
5.0032397408207343
5.0019438444924411
5.0385529157667381
5.0144708423326136
5.0064794816414686
5.0103671706263508
5.0119870410367167
5.0119870410367167
5.0119870410367167

5.026889848812095

The BigQuery Side - The winner

=A Austin, 2022 44
M M

The BigQuery Side - The winner

PRATE, SOILY, DUNCH

Honorable Mention

CRATE, SOILY, BUNDH

Austin, 2022

Can we do better?

Austin, 2022

Questions?

I T Austin, 2022

https://github.com/InigoSJ

47

