
Collibra | Engineering

Collibra Telemetry Backbone
OpenTelemetry and Apache Beam



Collibra | Engineering 2

Alex Van Boxel
Principal System Architect
Collibra

Apache Beam
Committer (but you have to forgive me, it’s been a while…)

Google Developer Expert



Collibra | Engineering 3

Built to connect 
to the data 
ecosystem



Collibra | Engineering 4

What is it

Telemetry



Photo by Mitchel Boot on Unsplash

Metrics

https://unsplash.com/@valeon?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/metrics?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Logs

Photo by Jeff Frenette on 
Unsplash

https://unsplash.com/@dezjeff?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/order?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/order?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Traces

Photo by beasty . on Unsplash

https://unsplash.com/@beastydesign?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/maze?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Collibra | Engineering 8

OpenTelemetry is a collection of 
tools, APIs, and SDKs. You use it 
to instrument, generate, collect, 
and export telemetry data 
(metrics, logs, and traces) for 
analysis in order to understand 
your software's performance and 
behavior.

OpenTelemetry
An observability framework for 
cloud-native software.



Collibra | Engineering 9

Exploring brave new data points

Backbone Goals



Collibra | Engineering 10

Observability is not a luxury
it should be a core feature of a SaaS solution



Collibra | Engineering 11

Dual Stack Backbone

Spaghetti



Collibra | Engineering 12

We should always have the 
possibility of easily switching 
backend vendors. Without rolling 
out vendor dependent agents. 
OpenTelemetry collector 
promises vendor independent 
collection. 

Vendor 
Independence

Removing lock-in at the 
collection side 



Collibra | Engineering 13

OpenTelemetry has an open 
protocol (defined in Protobuf) and 
well defined semantic 
conventions. Only through this 
openness can you start building 
on top of the data.

Owning our own 
telemetry data

Only when the protocol is 
open, can you own the data



Collibra | Engineering 14

Taking control and understanding 
the data you can aggregate and 
think about serving part of the 
data back.

Serving data 
back to our 
customers

If you own your data, only then 
can you serve it back



Collibra | Engineering

Building the backbone
blocks everywhere



Collibra | Engineering 16

Oh, that’s also a pipeline?!

OpenTelemetry Collector



Collibra | Engineering 17

https://github.com/open-telemetry
/opentelemetry-collector-contribWhat is the 

OpenTelemetry 
Collector

https://github.com/open-telemetry/opentelemetry-collector-contrib
https://github.com/open-telemetry/opentelemetry-collector-contrib


Collibra | Engineering 18

The 
OpenTelemetry 
Collector as a 
receiver



Collibra | Engineering 19

The 
OpenTelemetry 
Collector as a 
exporter



Collibra | Engineering 20

The 
OpenTelemetry 
Collector as a 
processor



21

R P E

R P E

B
A

C
K

EN
D

B
A

C
K

EN
DThe 

OpenTelemetry 
Collector as 
backbone 
ingress



22

R P E

R P E

R P E

R P E

B
A

C
K

EN
D

B
A

C
K

EN
D



23

R P E

R P E

R P E

R P E

B
A

C
K

EN
D

B
A

C
K

EN
D

R P E

R P E

R P E

R P E

X



24

R P E

R P E

R P E

R P E

R P E

R P E

R P E

R P E

R P E

X



Collibra | Engineering 25

Versatility little thing

Telemetry Stream



26

R P E

R P E

R P E

R P E

R P E R P E

R P E

B
A

C
K

EN
D

B
A

C
K

EN
D

R P E

R P E

R P E

R P E

X



Collibra | Engineering 27

The 
OpenTelemetry 
Collector as 
messaging 
producer 
consumer



28

R P E

R P E

R P E

R P E

R P E R P E

R P E

B
A

C
K

EN
D

B
A

C
K

EN
D

R P E

R P E

R P E

R P E

X



29

R P E

R P E

R P E

R P E

R P E R P E

R P E

B
A

C
K

EN
D

B
A

C
K

EN
D

A
N

A
LYTIC

S
C

LO
U

D
EVEN

TS

R P E

R P E

R P E

R P E

X



Collibra | Engineering

Beam Pipelines
Power of streams



31



32



Collibra | Engineering 33

Apache Beam 
as attribute 
enrichter

● A resource can be uniquely 
identified, and should have 
enough attributes at 
collection time to make it 
useful for observability 
systems

● Adding extra attributes could 
be interesting for analytical 
systems, example:
○ tenant id
○ environment type



Collibra | Engineering 34

Apache Beam 
as attribute 
enrichter

● Adding extra attributes can be 
easier in post, then 
deploying them on thousands 
of machines

● A special case in the same 
class: trace sampling… we 
same at 100% for analytical 
purposes. We don’t want to 
get billed for all our spans 



Collibra | Engineering 35

Apache Beam 
as attribute 
enrichter, why 
not in the 
collector?

● Attributes in the infrastructure 
could be managed by different 
teams (collection time)

● Collector also has a pipelines, 
this could be and easier one, 
but doing it in the Beam 
pipeline has the advantage of 
running on historical data in 
batch



Collibra | Engineering 36

Apache Beam 
as backup

● If you want to run on historical 
data, you need to start 
backing up your stream.

● We started backing up before 
the OpenTelemetry spec had 
a file format availabe, so we 
use CloudEvent spec

● Window per 15 minutes and 
use the standard AvroIO 
from Beam (CloudEvent has 
a Avro spec, we pack the 
proto in an Avro container).



Collibra | Engineering 37

Apache Beam 
as backup



Collibra | Engineering 38

Apache Beam 
as backup, why 
not in the 
collector?

● Same reason as enrichment, 
the build up of reusable 
component

● As the CloudEvent spec 
allowed to mix types (metrics, 
traces and logs) we did this, 
but changed to different files 
per type



Collibra | Engineering 39

Apache Beam 
as a analysis 
pipeline

Most analytical use-cases that 
come up are centered around 
usage. In our case API usage, 
but slowly other type of usage. 
We use both:

● traces
● logs (structured)

Try to avoid teams creating 
metrics to track usage, they lose 
information through aggregation.



Collibra | Engineering 40

Apache Beam 
as a analysis 
pipeline, 
use-case API 
Usage



Collibra | Engineering 41

Apache Beam 
as a analysis 
pipeline, 
use-case API 
Usage

Based on traces, each span that 
is relevant a SQL row is 
extracted.

public static Schema SCHEMA = Schema.builder()
.addStringField("trace_id")
.addNullableField("trace_start", FieldType.DATETIME)
.addNullableField("trace_duration", FieldType.INT64)
.addNullableField("trace_name", FieldType.STRING)
.addNullableField("service_name", FieldType.STRING)
.addNullableField("service_version", FieldType.STRING)
.addNullableField("salesforce_id", FieldType.STRING)
.addNullableField("environment_name", FieldType.STRING)
.addNullableField("host_name", FieldType.STRING)
.addNullableField("span_name", FieldType.STRING)
.addNullableField("function_name", FieldType.STRING)
.addNullableField("span_duration", FieldType.INT64)
.addNullableField("http_user_agent", FieldType.STRING)
.addNullableField("has_ui_rendering", FieldType.BOOLEAN)

.build();



Collibra | Engineering 42

Apache Beam 
as a analysis 
pipeline, 
use-case API 
Usage



Collibra | Engineering 43

Apache Beam 
as a analysis 
pipeline, 
calculated 
-metrics

Metrics can be created from 
traces and logs, into the Beam 
pipeline. It’s like feature 
extraction, something that 
Apache Beam is very good at.

Three use-cases of 
calculated-metrics:

● calculated-openapi
● calculated-javaapi
● calculated-state

All end up on a dedicated 
Pubsub topic



Collibra | Engineering 44

Apache Beam 
as a analysis 
pipeline, 
calculated 
-metrics 
(openapi)

Proxy logs (ApacheD, NGNX, 
Envoy), have detail enough to 
reverse engineer the operationId 
from the OpenAPI spec. 



Collibra | Engineering 45

Apache Beam 
as a analysis 
pipeline, 
calculated 
-metrics 
(openapi)

● The proxy logs are OTLP logs
● Convert them to spans, 

because logs don’t have a 
semantic convention yet, so 
we use the Semantic 
conventions for HTTP spans

● Then we create Semantic 
Conventions for HTTP Metrics 
out of the spans
○ duration
○ request size
○ response size

https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/http.md#semantic-conventions-for-http-spans
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/http.md#semantic-conventions-for-http-spans
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/semantic_conventions/http-metrics.md
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/semantic_conventions/http-metrics.md


Collibra | Engineering 46

Apache Beam 
as a classifier

All those calculated-metrics are 
put to good use, not only do they 
go the the observability tools, 
they are used to create feature 
vectors.

● Different metrics are grouped 
together in different window 
sizes (1m, 5m and 15m)

● The vector is used to create 
CloudEvents (this could be 
an alert)



Collibra | Engineering 47

Serving 
observability 
data back to the 
product

The same OTLP types are also 
easy to store into Bigtable.

OTLP structs are easy to store as 
is, and easy to work with for real 
time aggregations.



R P E

R P E

R P E

R P E

R P E



Collibra | Engineering

Conclusion
and learnings



50

● Protobuf (OTLP) in
● Out:

○ Protobuf (OTLP)
○ BigQuery/Bigtable/Elastic
○ CloudEvent

● Developed reusable model 
for all pipelines (internal 
Protobuf replaces Row 
based)

Learning process



Collibra | Engineering 51

What would we 
do different?

● As the engineerings in the 
operations we would now start 
investigating the Go SDK (two 
years ago it was too early)

● Some parts would be a better 
fit for the 
opentelemetry-collector 
(pipeline), switching to the 
Go SDK maybe makes it 
easier to share code.



Collibra | Engineering 52

BIP-1 explained

Thank you
Questions?


