
Austin, 2022

Detecting Change-Points in
Apache Beam
By Devon Peticolas - Oden Technologies

https://github.com/x/slides/tree/master/beam-summit-2022

Devon
Peticolas
Principal Engineer @
Oden Technologies

“Beam Guy”

Austin, 2022

In This Talk

● What is Change-Point Detection?

● Why and how does Oden use Change-Point Detection to deliver features?

● Methods of doing Change-Point Detection in Beam.

● Methods of doing Change-Point Detection with Smoothing.

● Impacts of event sparsity, lateness, and order.

Austin, 2022

A little about Oden

Oden’s
Customers

Medium to large manufacturers in
plastics extrusion, injection molding,
and pipes, chemical, paper and pulp.

Process and Quality Engineers looking
to centralize, analyze, and act on their
data.

Plant managers who are looking to
optimize logistics, output, and cost.

5

Interactive Time-series Analysis

● Compare performance across different
equipment.

● Visualize hourly uptime and key custom metrics.
● Calculations for analyzing and optimizing factory

performance.

Real Time Manufacturing Data

● Streaming second-by-second metrics
● Interactive app that prompts on

production state changes and collects
user input.

Austin, 2022

Background:
How Oden Uses Beam

Austin, 2022

How Oden Uses Beam

● Ingesting “raw” manufacturing data and mapping it into Oden “events”
● Combining events using streaming joins
● Making customer-configured transformations to events
● Transforming metric events into contextual interval events

9

* Lots of Side-Input Joining
* Lots of Complex Windowing
* Lots of Performance Concerns

Austin, 2022

Streaming Factory Data - In Summary

PLC
Transform
Factory
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

10

Austin, 2022

Streaming Factory Data - In Summary

PLC Acquisition

Calculated
Metrics

Windowed
Calculated
Metrics

Raw Factory Data Metrics

TSDB

Rollups

State
Change
Detection Postgres

Windowed
Calculated
Metrics

Windowed
Calculated
Metrics
(60s)

Rollups
(600s)

Everytime I
remember this
exists I get sad

API that uses regex
as a language parser
with terrifying
effectiveness

Definitely a waste
of money

Probably a waste
of money

Flaming Rainbow
Bridge to Asgard

Reality

Also Metrics

We built this to
close a deal and
now I’m not sure if
we can kill it

new TSDB

Also BigQuery
because we don’t
trust our DS team
with either TSDB

Google-provided
Dataflow Template
that DROPS DATA
when redeployed

11

Austin, 2022

Data is
 Group

ed b
y

Produ
ctio

n Line

12

Austin, 2022

 P

roc
ess

Con
tex

t

Metr
ics

Availability

Water Status
Operator Number

13

Austin, 2022

Metrics

PLC
Transform
Factory
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Each metric describes a sensor

Each value is a float

One value per second per metric

14

Austin, 2022

Intervals

PLC
Transform
Factory
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Each interval describes the state of a
manufacturing line

Each value is categorical string

One value per change

15

Austin, 2022

Creating Intervals from Metrics

PLC
Transform
Factory
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Change
Point
Detection

16

Austin, 2022

Use Case:
Creating Intervals from Metrics

Austin, 2022

Visualizing Events

Process Tim
e

Event Time

18

Austin, 2022

Visualizing Events

Process Tim
e

Event Time

On-Time

Late

Out of Order

19

Austin, 2022

Visualizing Events

Process Tim
e

Event Time

People in group photo

The
Photographer

20

Austin, 2022

Visualizing Events

Process Tim
e

Event Time

People in group photo

The
Photographer

21

Austin, 2022

Visualizing Events w/ Change

Process Tim
e

Event Time

Change

22

Austin, 2022 23

Austin, 2022 24

Availability = Uptime / (Uptime + Downtime)

Overall Equipment Efficiency = Availability x Performance x Quality

Metrics into
Categorical Values

// Load configuration every 5-minutes.
PCollectionView<Config> configView = p
 .apply(
 GenerateSequence
 .from(0)
 .withRate(
 1, Duration.standardMinutes(5)))
 .apply(MapElements(...)) // API call
 .apply(View.asSingleton());

// Map metric values to categorical
// values using config side-input.
p.apply(ParDo
 .of(new DoFn<Metric, String>() {
 public void processElement(
 Metric m, ProcessContext c
) {
 Config config = c.sideInput(configView)
 if (m.value > config.forMetric(m)) {
 c.output("up");
 } else {
 c.output("down");
 }
 })
 .withSideInputs(configView))

Process Tim
e

Event Time

25

Austin, 2022 26

Austin, 2022

Solution:
Using Beam State

Beam State to
Detect
Change-Points

DoFn<KV<String, T>, T> {
 StateSpec<ValueSpec<T>>
prevSpec =
 StateSpecs.value(...);

 public void processElement(
 ProcessContext c,
 ValueState<T> prev) {
 T curr =
c.element().getValue();
 T last = prev.read();
 if (curr != last) {
 c.output(curr);
 }
 }
}

Process Tim
e

Event Time

State

28

Austin, 2022

Issues:
Using Beam State

Beam State to
Detect
Change-Points

DoFn<KV<String, T>, T> {
 StateSpec<ValueSpec<T>>
prevSpec =
 StateSpecs.value(...);

 public void processElement(
 ProcessContext c,
 ValueState<T> prev) {
 T curr =
c.element().getValue();
 T last = prev.read();
 if (curr != last) {
 c.output(curr);
 }
 }
}

Process Tim
e

Event Time

State

30

Bad Detection

Austin, 2022

Solution:
Watermark-Triggered Windows

Watermark-Triggered
Windows

Window
 .<T>into(
 SlidingWindows
 .of(TWO_SECONDS)
 .every(ONE_SECOND))
 .accumulatingFiredPanes()
 .triggering(
 Repeatedly.forever(
 AfterWatermark
 .pastEndOfWindow()))

Process Tim
e

Event Time

lag

32

Watermark-Triggered
Windows and
Out-of-order Data

Window
 .<T>into(
 SlidingWindows
 .of(TWO_SECONDS)
 .every(ONE_SECOND))
 .accumulatingFiredPanes()
 .triggering(
 Repeatedly.forever(
 AfterWatermark
 .pastEndOfWindow()))

Process Tim
e

Event Time

33

Austin, 2022

Issues:
Watermark-Triggered Windows
and Lag

Process Tim
e

Event Time

lag

Watermark-Triggered
Windows and
Lagging Data

Window
 .<T>into(
 SlidingWindows
 .of(TWO_SECONDS)
 .every(ONE_SECOND))
 .accumulatingFiredPanes()
 .triggering(
 Repeatedly.forever(
 AfterWatermark
 .pastEndOfWindow()))

Ideal Watermark
Actual Watermark

35

Austin, 2022

 Non-homogeneous Lag

PLC
Transform
Factory
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Change
Point
Detection

PLC

PLC

36

Austin, 2022

 Non-homogeneous Lag

PLC
Transform
Factory
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Change
Point
Detection

PLC

PLC

37

Process Tim
e

Event Time

lag

Window
 .<T>into(
 SlidingWindows
 .of(TWO_SECONDS)
 .every(ONE_SECOND))
 .accumulatingFiredPanes()
 .triggering(
 Repeatedly.forever(
 AfterWatermark
 .pastEndOfWindow()))

High watermark caused by bad factory

38

Slow Detection

Watermark-Triggered
Windows and
Lagging Data

Austin, 2022

Solution:
Data-Triggered Windows

Process Tim
e

Event Time

Data-Triggered
Windows

Window
 .<T>into(
 SlidingWindows
 .of(TWO_SECONDS)
 .every(ONE_SECOND))
 .accumulatingFiredPanes()
 .triggering(
 Repeatedly.forever(
 AfterPane
 .elementCountAtLeast(2)))

40

no lag

Process Tim
e

Event Time

Data-Triggered
Windows

Window
 .<T>into(
 SlidingWindows
 .of(TWO_SECONDS)
 .every(ONE_SECOND))
 .accumulatingFiredPanes()
 .triggering(
 Repeatedly.forever(
 AfterPane
 .elementCountAtLeast(2)))

41

2nd trigger

1st trigger

Austin, 2022

Issues:
Using Windows but Sparse Data

Austin, 2022

Process Tim
e

Event Time

43

No Detection

Austin, 2022

Process Tim
e

Event Time

 > Δmax

44

Watermark-driven trigger

Austin, 2022

Process Tim
e

Event Time

 > Δmax

45

2nd trigger

1st trigger

3rd trigger

Data-driven trigger

must trigg
er every

element

Austin, 2022

Process Tim
e

Event Time

 > Δmax

46

2nd trigger

1st trigger

3rd trigger

???

Was there a change at t3?

Austin, 2022

Use Case:
Creating “Smoothed” Intervals
from Metrics

Austin, 2022 48

This

Not This

Austin, 2022

Process Tim
e

Event Time

49

This

Not This

Austin, 2022

Process Tim
e

Event Time

50

Smoothing eliminates the first n-seconds.

This is the same as our sparse data.

Austin, 2022

Process Tim
e

Event Time

51

 > smoothe + Δmax

Austin, 2022

Process Tim
e

Event Time

52

Actual Change Event Time

lag

Created lag is

always

>= smoothe

Austin, 2022

Solution:
State + Sliding Windows

Austin, 2022

Process Tim
e

Event Time

ChangePseudo-State

54

Austin, 2022

Process Tim
e

Event Time

ChangePseudo-State

State

55

Austin, 2022

✅ ✅ ❌

56

Austin, 2022

✅ ✅ ❌
smoothe-time + event-time Δmax + out-of-ordermax < process-time Δmin

57

I think this is wrong but…

Austin, 2022

Key Takeaways

● Oden Uses Change-Point Detection to transform Metrics into Intervals

● Beam State is fast and good at sparsity, but bad at out-of-order

● Windowing is slower and good at out-of-order, but bad at sparsity

● Combining Beam State and Windowing is good at out-of-order and sparsity

● “Smoothed” Change-Point Detection is just a sparsity problem

58

Thank You
And a special thanks to Jie Zhang, Jake Skelcy, and Deepak Turaga

59

Austin, 2022

Questions?

60

Email: devon@petiocol.as
Github: github.com/x

