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In This Talk

● What is Change-Point Detection?

● Why and how does Oden use Change-Point Detection to deliver features?

● Methods of doing Change-Point Detection in Beam.

● Methods of doing Change-Point Detection with Smoothing.

● Impacts of event sparsity, lateness, and order.
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A little about Oden



Oden’s 
Customers

Medium to large manufacturers in 
plastics extrusion, injection molding, 
and pipes, chemical, paper and pulp.

Process and Quality Engineers looking 
to centralize, analyze, and act on their 
data.

Plant managers who are looking to 
optimize logistics, output, and cost.

5



Interactive Time-series Analysis

● Compare performance across different 
equipment.

● Visualize hourly uptime and key custom metrics.
● Calculations for analyzing and optimizing factory 

performance.



Real Time Manufacturing Data

● Streaming second-by-second metrics
● Interactive app that prompts on 

production state changes and collects 
user input.
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Background:
How Oden Uses Beam
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How Oden Uses Beam

● Ingesting “raw” manufacturing data and mapping it into Oden “events”
● Combining events using streaming joins
● Making customer-configured transformations to events
● Transforming metric events into contextual interval events
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* Lots of Side-Input Joining
* Lots of Complex Windowing
* Lots of Performance Concerns
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Streaming Factory Data - In Summary

PLC
Transform 
Factory 
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals
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Streaming Factory Data - In Summary

PLC Acquisition

Calculated 
Metrics

Windowed
Calculated 
Metrics

Raw Factory Data Metrics

TSDB

Rollups

State 
Change 
Detection Postgres

Windowed
Calculated 
Metrics

Windowed
Calculated 
Metrics 
(60s)

Rollups 
(600s)

Everytime I 
remember this 
exists I get sad

API that uses regex 
as a language parser 
with terrifying  
effectiveness

Definitely a waste 
of money

Probably a waste 
of money

Flaming Rainbow 
Bridge to Asgard

Reality

Also Metrics

We built this to 
close a deal and 
now I’m not sure if 
we can kill it

new TSDB

Also BigQuery 
because we don’t 
trust our DS team 
with either TSDB

Google-provided 
Dataflow Template 
that DROPS DATA 
when redeployed
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Metrics

PLC
Transform 
Factory 
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Each metric describes a sensor

Each value is a float

One value per second per metric
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Intervals

PLC
Transform 
Factory 
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Each interval describes the state of a 
manufacturing line

Each value is categorical string

One value per change
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Creating Intervals from Metrics

PLC
Transform 
Factory 
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Change
Point 
Detection
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Use Case:
Creating Intervals from Metrics
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Visualizing Events

Process Tim
e

Event Time
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Visualizing Events

Process Tim
e

Event Time

On-Time

Late

Out of Order
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Visualizing Events

Process Tim
e

Event Time

People in group photo

The 
Photographer
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Visualizing Events

Process Tim
e

Event Time

People in group photo

The 
Photographer
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Visualizing Events w/ Change

Process Tim
e

Event Time

Change
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Availability = Uptime / (Uptime + Downtime)

Overall Equipment Efficiency = Availability x Performance x Quality



Metrics into 
Categorical Values

// Load configuration every 5-minutes.
PCollectionView<Config> configView = p
  .apply(
    GenerateSequence
      .from(0)
      .withRate(
        1, Duration.standardMinutes(5)))
  .apply(MapElements(...)) // API call
  .apply(View.asSingleton());

// Map metric values to categorical
// values using config side-input.
p.apply(ParDo
  .of(new DoFn<Metric, String>() {
    public void processElement(
      Metric m, ProcessContext c
    ) {
    Config config = c.sideInput(configView)
    if (m.value > config.forMetric(m)) {
      c.output("up");
    } else {
      c.output("down");
    }
  })
  .withSideInputs(configView))
  

Process Tim
e

Event Time
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Solution:
Using Beam State



Beam State to 
Detect 
Change-Points

DoFn<KV<String, T>, T> {
  StateSpec<ValueSpec<T>> 
prevSpec =
    StateSpecs.value(...);

  public void processElement(
    ProcessContext c,
    ValueState<T> prev) {
    T curr = 
c.element().getValue();
    T last = prev.read();
    if ( curr != last) {
      c.output(curr);
    }
  }
}

Process Tim
e

Event Time

State
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Issues:
Using Beam State



Beam State to 
Detect 
Change-Points

DoFn<KV<String, T>, T> {
  StateSpec<ValueSpec<T>> 
prevSpec =
    StateSpecs.value(...);

  public void processElement(
    ProcessContext c,
    ValueState<T> prev) {
    T curr = 
c.element().getValue();
    T last = prev.read();
    if ( curr != last) {
      c.output(curr);
    }
  }
}

Process Tim
e

Event Time

State
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Bad Detection
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Solution:
Watermark-Triggered Windows



Watermark-Triggered 
Windows

Window
  .<T>into(
    SlidingWindows
      .of(TWO_SECONDS)
      .every(ONE_SECOND))
  .accumulatingFiredPanes()
  .triggering(
    Repeatedly.forever(
      AfterWatermark
        .pastEndOfWindow()))

Process Tim
e

Event Time

lag
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Watermark-Triggered 
Windows and
Out-of-order Data

Window
  .<T>into(
    SlidingWindows
      .of(TWO_SECONDS)
      .every(ONE_SECOND))
  .accumulatingFiredPanes()
  .triggering(
    Repeatedly.forever(
      AfterWatermark
        .pastEndOfWindow()))

Process Tim
e

Event Time
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Issues:
Watermark-Triggered Windows 
and Lag



Process Tim
e

Event Time

lag

Watermark-Triggered 
Windows and
Lagging Data

Window
  .<T>into(
    SlidingWindows
      .of(TWO_SECONDS)
      .every(ONE_SECOND))
  .accumulatingFiredPanes()
  .triggering(
    Repeatedly.forever(
      AfterWatermark
        .pastEndOfWindow()))

Ideal Watermark
Actual Watermark
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   Non-homogeneous Lag

PLC
Transform 
Factory 
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Change
Point 
Detection

PLC

PLC
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   Non-homogeneous Lag

PLC
Transform 
Factory 
Data

Raw Factory Data

TSDB

Postgres

Metrics

Intervals

Change
Point 
Detection

PLC

PLC
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Process Tim
e

Event Time

lag

Window
  .<T>into(
    SlidingWindows
      .of(TWO_SECONDS)
      .every(ONE_SECOND))
  .accumulatingFiredPanes()
  .triggering(
    Repeatedly.forever(
      AfterWatermark
        .pastEndOfWindow()))

High watermark caused by bad factory
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Slow Detection

Watermark-Triggered 
Windows and
Lagging Data
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Solution:
Data-Triggered Windows



Process Tim
e

Event Time

Data-Triggered 
Windows

Window
  .<T>into(
    SlidingWindows
      .of(TWO_SECONDS)
      .every(ONE_SECOND))
  .accumulatingFiredPanes()
  .triggering(
    Repeatedly.forever(
      AfterPane
        .elementCountAtLeast(2)))
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no lag



Process Tim
e

Event Time

Data-Triggered 
Windows

Window
  .<T>into(
    SlidingWindows
      .of(TWO_SECONDS)
      .every(ONE_SECOND))
  .accumulatingFiredPanes()
  .triggering(
    Repeatedly.forever(
      AfterPane
        .elementCountAtLeast(2)))
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2nd trigger

1st trigger
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Issues:
Using Windows but Sparse Data
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Process Tim
e

Event Time
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No Detection
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Process Tim
e

Event Time

 > Δmax

44

Watermark-driven trigger



Austin, 2022

Process Tim
e

Event Time

 > Δmax
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2nd trigger

1st trigger

3rd trigger

Data-driven trigger

must trigg
er every 

element
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Process Tim
e

Event Time

 > Δmax
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2nd trigger

1st trigger

3rd trigger

???

Was there a change at t3?
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Use Case:
Creating “Smoothed” Intervals 
from Metrics
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This

Not This
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Process Tim
e

Event Time
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This

Not This
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Process Tim
e

Event Time
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Smoothing eliminates the first n-seconds. 

This is the same as our sparse data.
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Process Tim
e

Event Time
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 > smoothe + Δmax
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Process Tim
e

Event Time
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Actual Change Event Time

lag

Created lag is 

always 

>= smoothe
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Solution:
State + Sliding Windows
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Process Tim
e

Event Time

ChangePseudo-State
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Process Tim
e

Event Time

ChangePseudo-State

State
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✅ ✅ ❌
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✅ ✅ ❌
smoothe-time + event-time Δmax + out-of-ordermax < process-time Δmin
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I think this is wrong but…
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Key Takeaways

● Oden Uses Change-Point Detection to transform Metrics into Intervals

● Beam State is fast and good at sparsity, but bad at out-of-order

● Windowing is slower and good at out-of-order, but bad at sparsity

● Combining Beam State and Windowing is good at out-of-order and sparsity

● “Smoothed” Change-Point Detection is just a sparsity problem
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Thank You
And a special thanks to Jie Zhang, Jake Skelcy, and Deepak Turaga
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Questions?
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Email: devon@petiocol.as
Github: github.com/x


