

Welcome to Beam Summit

Pablo Estrada & Danielle Syse

Thanks to our speakers!

eam Summit Team

0

-

6

ragalbh Srivastav St. Moneger at Wayfai

T

Thanks to our Sponsors

Google Cloud

GOLD

SILVER

Adobe

Thanks to our partners

PARTNERS

KEYNOTE SESSIONS

Kerry Donny-Clark

Manager Google Cloud Dataflow

Lak Lakshmanan

Operating Executive Silver Lake

Rickard Zwahlen

Data Engineer Spotify

Lohit Vijayarenu

Principal Software Engineer Twitter

GOOGLE'S INVESTMENT ON BEAM AND ITS INTERNAL USE

10:00 - 10:25 AM

MACHINE LEARNING DESIGN PATTERNS: BETWEEN BEAM AND A HARD PLACE

10:25 - 10:50 AM

TAILORING PIPELINES AT SPOTIFY

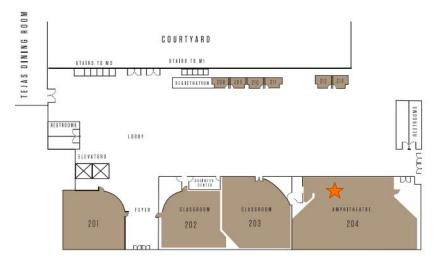
10:50 - 11:15 AM

THE ADOPTION, CURRENT STATE, AND FUTURE OF APACHE BEAM

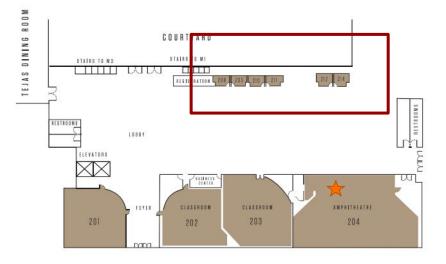
11:15 - 11:40 AM

Before anything..!

Please, PLEASE fill our survey:


Monday Schedule

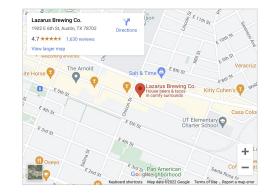
11:40	Break			16:00	Break			
12:00	12:00-12:50 Vega: Scaling MLOps Pipelines at Credit Karma using Apache Beam and Dataflow by Debasish Das & Vishnu Venkataraman	12:00 - 12:50 Houston, we've got a problem: 6 principles for pipelines design taken from the Apollo missions by Israel Herraiz & Paul Balm	1200 - 1225 RunInference: Machine Learning Inferences in Beam by Andy Ye	16:15	16:15-16:40 Data Integration on cloud made easy using Apache Beam by Parag Ghosh	16:15 - 16:40 How to benchmark your Beam pipelines for cost optimization and capacity planning by Roy Arsan	16:15 - 17:15 Cloud Spanner change streams and Apache Beam by Haikuo Liu, Nancy Xu & Le Chang	
			1230-1255 Speeding up development with Apache Beam (Adobe Experience Platform) by Constantin Scacun & Alexander Falca		16:45-17:10 Collibra's Telemetry Backbone - OpenTelemetry and Apache Beam by Alex Van Boxel	16:45 - 17:10 Strategies for caching data in Dataflow using Beam SDK by Zeeshan		
13:00	Lunch			17:15	17:15-18:05 New Avro serialization and deserialization	17:15 - 18:05 Implementing Cloud Agnostic Machine	17:15 - 18:00 Cloud Spanner change streams and	
14:00	14:00-14:50 Powering Real-time Data at Intuit: A Look at Golden Signals powered by Beam by Omkar Deshpande, Dunja Panic, Nick Hwang & Nagaraja Tantry	14:00 - 14:50 How the sausage gets made: Dataflow under the covers by Pablo Estrada	14:00 - 14:25 State of the Go SDK 2022 by Robert Burke		in Beam SQL by Talat Uyarer	Learning Workflows with Apache Beam on Kubernetes by Charles Adetiloye & Alexander Lerma	Apache Beam (continued) by Haikuo Liu, Nancy Xu & Le Chang	
			14:30-14:55 How to break Wordle with Beam and BigQuery by Inigo-san-jose		Reception 18:05 - 20:00 hrs			
15:00	15:00 - 15:50 BlueVoyant: Detecting Security Dumpster Fires on the Internet by Alfredo Gimenez, Adam Najman, Tucker Leavitt & Tyler Flach	15:00 - 15:50 Migration Spark to Apache Beam/Dataflow and hexagonal architecture + DDD by Mazlum Tosun	1500-1525 Introduction to performance testing in Apache Beam by Alexey Romanenko					
			15:30 - 15:55 From script slums to beam skyscrapers by Shailesh Mangal					



Where to Go Next?

- All sessions will take place on this floor across 202-204
 - Keynotes will be held in the Amphitheatre only
- Lunch will take place from 1-2 PM in the Tejas Dining Room
 - Lunch box options include roast beef on ciabatta, chicken salad croissant and falafel fritter wraps
- Session rooms will be noted outside each door as well on each calendar invite/Beam Summit page
- Restrooms located at each end of the hall with elevators to our left next to the Dining Room

About the space...



- We have rooms with whiteboards across the hall. Feel free to use the whiteboards.
 - We also have easel pads in the presentation rooms. Feel free to use in technical convos.

Networking Opportunities

Please join us for networking opportunities while you're with us:

Reception tonight!

Join us for drinks after the event from **6:00 - 8:00 pm** at the **AT&T Conference Center Courtyard**.

After Party Tuesday

Tuesday at 6:30pm at Lazarus Brewing Co, where beer on the house will be waiting for you! Send the directions to your phone by scanning the following QR code.

Networking Opportunities

Job Openings

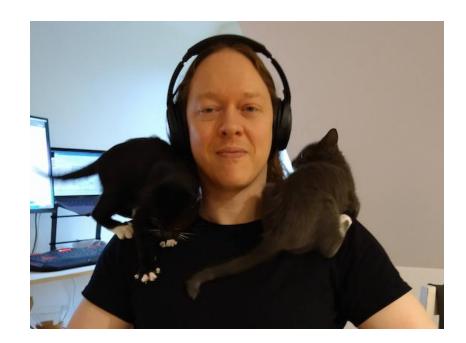
Reminder to take a look at the current job openings gathered by our sponsors:

Speakers!

• Please arrive **a little early** to your room for setting up

Thank You

Google's investments in Beam


By Dr. Kerry Donny-Clark, Google Engineering Manager for Beam

Hello! I'm Kerry

Me at work

Me at home

My old job

Apache Beam

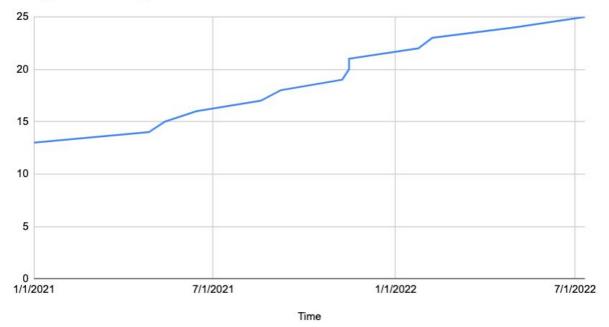
• Unified Model: Batch and Streaming Many SDKs Java, Python, Go, TS* Portability Dataflow, Flink, Spark, Hazelcast, Ray*, Dask*,

Austin, 2022

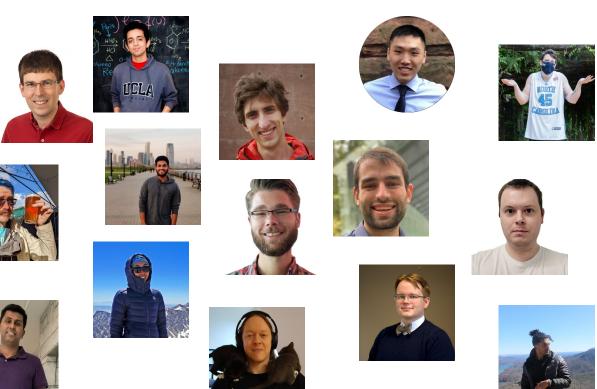
etc

*Experimental or in progress

Apache Beam used in Google



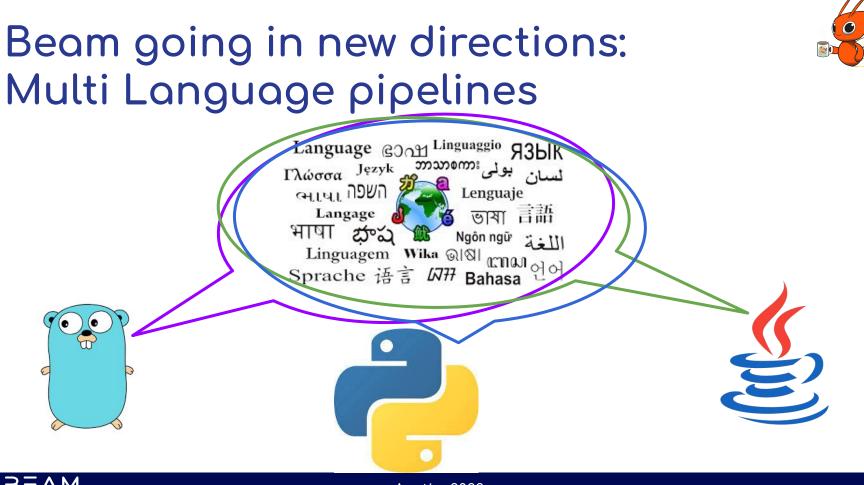
The Beam Team at Google


Googlers working full time on Beam

The Beam Team at Google

3

 ΔM

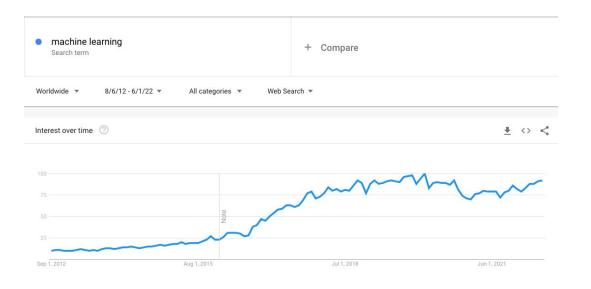

SUMMIT

A Rebus Riddle

Beam 2.40, Dataflow GA 7/20

Beam <u>Go</u>ing in new directions

14:00 - 14:25. State of the Go SDK 2022 by Robert Burke Room: 202



16:15 - 16:40.TuesdayWriting a native Go streaming pipelineby Danny McCormick & Jack McCluskeyRoom: 203

Beam going in new directions: RunInference in Beam Python

Beam going in new directions: RunInference in Beam Python

12:00 - 12:25. Today RunInference: Machine Learning Inferences in Beam by Andy Ye Room: 202

RunInference in Beam 2.40, GA on Dataflow 7/20

https://beam.apache.org/documentation/sdks/python-machine-learning/

Beam going in new directions: Typescript SDK

Beam going in new directions: Typescript SDK

Beam going in new directions: Typescript SDK

... to contribute!

https://github.com/apache/beam/tree/master/sdks/typescript

A better way to learn Beam: Beam Playground

https://play.beam.apache.org/

A better way to learn Beam: Beam Playground

11:00 - 11:10. Wednesday Beam Playground: discover, learn and prototype with Apache Beam by Daria Malkova Room: 201

A better way to learn Beam: Cloud notebooks

https://cloud.google.com/dataflow/docs/guides/interactive-pipeline-development

A better way to learn Beam: A Tour of Beam

10

Coming in late 2022!

Contributing to Beam has never been easier: Github Issues

Inbox	Apache	Contributor permission for JIRA - Beam connecto
Inbox	Apache	Contributor permission for JIRA - org/jira/browse
Inbox	Apache	Contributor permission for Beam Jira tickets - add
Inbox	Apache	Contributor permission for Beam Jira tickets - org
Inbox	Apache	Jira contributor permission - request > contributo
Inbox	Apache	Jira contributor permission - you to Jira. Thanks, (
Inbox	Apache	Jira - contributor permission - you to Jira. Thanks;UES
Inbox	Apache	RE: Re: Contributor permission for Jira tickets - is
Inbox	Apache	Contributor permission for Jira tickets - is your jira
Inbox	Apache	Jira Contributor Permission Request - Please gran
Inbox	Apache	Contributor permission for Beam Jira tickets - as
Inbox	Apache	Contributor permission for Beam Jira tickets - My
Apache	Contri	<mark>butor permission</mark> for Beam <mark>Jira</mark> tickets - as a <mark>contr</mark>
Inbox	Apache	Re: Contributor permission for Beam Jira Tickets
Inbox	Apache	Re: Contributor permission for Beam Jira Tickets

Contributor

···· (:)

Contributing to Beam has never been easier: PR-bot

Turn pr-bot on for whole repo #21421

Closed II damccorm opened this issue on 4 Jun · 0 comments · Fixed by #22257

damccorm commented on 4 Jun

Right now, the pr-bot is only enabled for prs in the Go area - once its proven to be working, we should turn it on for the rest of the repo.

Imported from Jira BEAM-14045. Original Jira may contain additional context. Reported by: damccorm. Subtask of issue #21417

Conclusion

Beam is growing

- Multi Language
- Beam Go SDK
- RunInference in Python
- TypeScript SDK

Learn Beam

- Beam Playground
- Beam Notebooks
- A Tour of Beam

Contribute to Beam

- Github Issues
- PR-bot

Machine Learning Design Patterns: Between Beam and a Hard Place

Lak Lakshmanan

🍠 🕘 lak_luster

Formalized best practices to solve common problems

O'REILLY°

Machine Learning Design Patterns

Solutions to Common Challenges in Data Preparation, Model Building, and MLOps

Preface

• The Need for ML Design Patterns

• Data representation design patterns

- #1 Hashed Feature
- #2 Embedding
- #3 Feature Cross
- #4 Multimodal Input
- Problem representation design patterns
 #5 Reframing
 - #5 Kellaming
 - #6 Multilabel
 - #7 Ensemble
 - #8 Cascade
 - #9 Neutral Class
 - #10 Rebalancing
- Patterns that modify model training

 #11 Useful overfitting
 - #12 Checkpoints
 - #13 Transfer Learning
 - #14 Distribution Strategy
 - #15 Hyperparameter Tuning

- Resilience patterns
 - #16 Stateless Serving Function
 - #17 Batch Serving
 - #18 Continuous Model Evaluation
 - #19 Two Phase Predictions
 - #20 Keyed Predictions
- Reproducibility patterns
 - #21 Transform
 - #22 Repeatable Sampling
 - #23 Bridged Schema
 - #24 Windowed Inference
 - #25 Workflow Pipeline
 - #26 Feature Store
 - #27 Model Versioning
- Responsible AI
 - #28 Heuristic benchmark
 - #29 Explainable Predictions
 - #30 Fairness Lens
- Summary

ML flavors of the same problems that arise in all software

O'REILLY°

Machine Learning Design Patterns

Solutions to Common Challenges in Data Preparation, Model Building, and MLOps

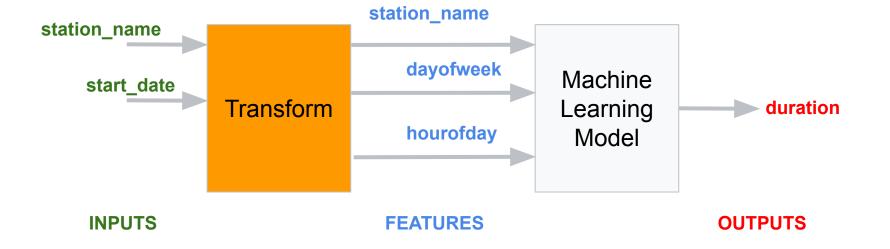
Maintainability

How do you represent categorical data when the vocabulary increases over time?

Reusability

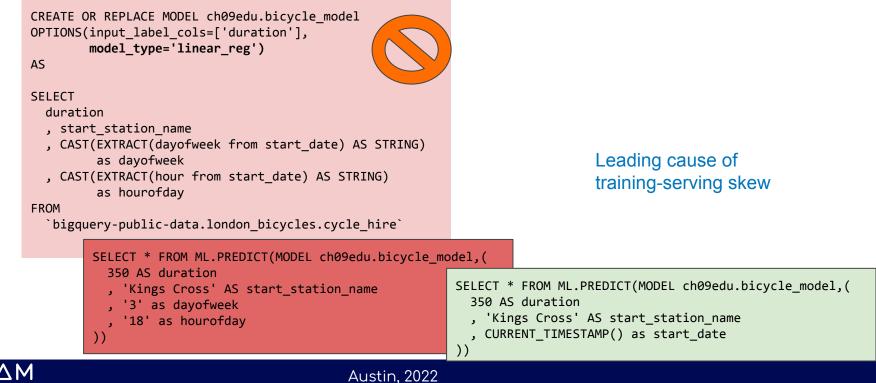
How do you avoid having to relearn relationships between categorical variables used in related ML problems?

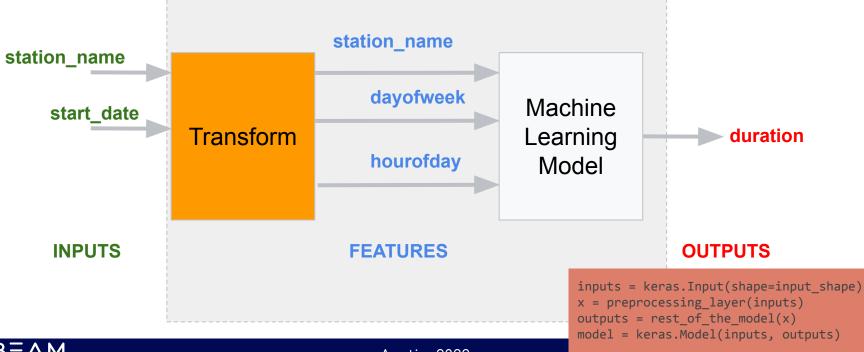
• The Need for ML Design Patterns


- Data representation design patterns
- #1 Hashed Feature
- #2 Embedding
- #3 Feature Cross
- #4 Multimodal Input
- Problem representation design patterns
 *5 Reframing
 - #6 Multilabel
 - #7 Ensemble
 - #8 Cascade
 - #9 Neutral Class
 - #10 Rebalancing
- Patterns that modify model training

 #11 Useful overfitting
 - #12 Checkpoints
 - #13 Transfer Learning
 - #14 Distribution Strategy
 - #15 Hyperparameter Tuning

- Resilience patterns
 - #16 Stateless Serving Function
 - #17 Batch Serving
 - #18 Continuous Model Evaluation
 - #19 Two Phase Predictions
 - #20 Keyed Predictions
- Reproducibility patterns
 - #21 Transform
 - #22 Repeatable Sampling
 - #23 Bridged Schema
 - #24 Windowed Inference
- #25 Workflow Pipeline
- #26 Feature Store
- #27 Model Versioning
- Responsible AI
 - #28 Heuristic benchmark
 - #29 Explainable Predictions
 - #30 Fairness Lens
- Summary


Beam is widely used in a few design patterns


Ideally, client code does not have to know about all the transformations that were carried out

The Transform pattern: the model graph should include transformations

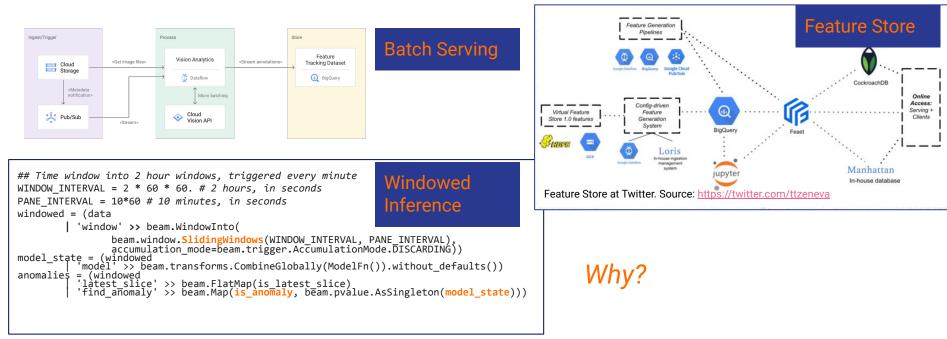
tf.transform provides reuse <u>and</u> efficiency

```
def main(output_dir):
    with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
        transformed_dataset, transform_fn = (
              (raw_data, raw_data_metadata) | tft_beam.AnalyzeAndTransformDataset(
                    preprocessing_fn))
    transformed_data, transformed_metadata = transformed_dataset
```

```
# Save the transform_fn to the output_dir
```

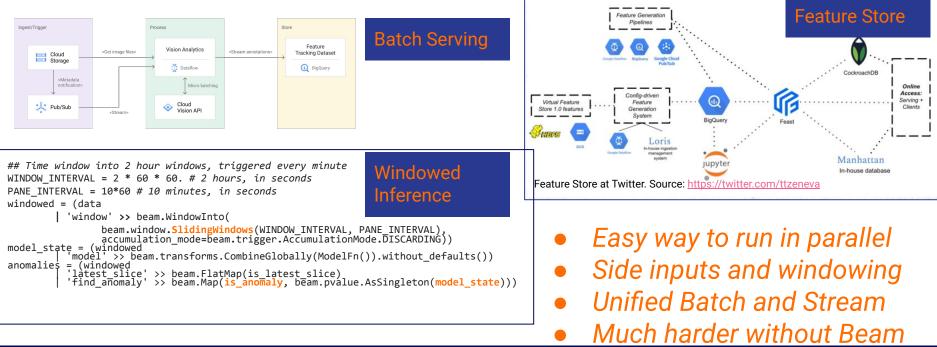
```
_ = (
    transform_fn
    | 'WriteTransformFn' >> tft_beam.WriteTransformFn(output_dir)
```

return transformed_data, transformed_metadata

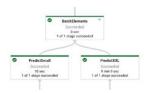

```
class ExportModel(tf.Module):
    def __init__(self, trained_model, input_transform):
        self.trained_model = trained_model
        self.input_transform = input_transform
```

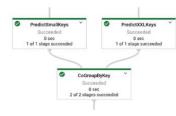
```
@tf.function
def __call__(self, inputs, training=None):
    x = self.input_transform(inputs)
    return self.trained_model(x)
```


Other patterns that Beam supports well



Other patterns that Beam supports well





There are other patterns where Beam could be used, but isn't

Batching and branching:

Joining the results:

Cascade Transfer Learning Continuous Evaluation Two Phase Predictions Multimodal Input Workflow Pipeline

https://cloud.google.com/blog/products/data-analytics/ml-inference-in-dataflow-pipelines

What's common to these?

Cascade Transfer Learning Continuous Evaluation Two Phase Predictions Multimodal Input Workflow Pipeline

Why?

- Training, evaluation: One-off, rare task
- Online serving: On-demand to millions
- Artifact Management among multiple ML models: Orchestration

What if Beam could:

- scale from zero to millions of QPS
- consume/produce HTTP, cloud events
- be GPU-accelerated
- be run on-demand (start instantaneously)?

Imagine ...

A Beam Runner that runs on Cloud Run

Portable way to run Java/Go/Python across serverless container options on AWS, GCP, Azure

Scales to zero, suitable for rare ETL, scales on-demand code

Portable ML code across training, inference, evaluation

Thank you!

Tailoring pipelines at Spotify

By Rickard Zwahlen

Rickard Zwahlen

Data engineer @ Spotify

in @rickardzwahlen

(Mel: ABBA - Super Trouper) Super Deduper runs as fast as lightning Handles massive skew Gets events to you But only one of each, not two

Rickard Zwahlen

Data engineer @ Spotify

in @rickardzwahlen

Smörgåsbord of data

How it started

How it's going

Why Scala?

- Productivity + performance
 Functional & type safe
- Large software ecosystem for data

The love triangle

Word count

val sc = ScioContext()

SC

.textFile("shakespeare.txt")
.flatMap { _ .split("[^a-zA-Z']+")
.filter(_.nonEmpty) }
.countByValue
.saveAsTextFile("wordcount.txt")

sc.run()

Joins

```
val sc = ScioContext()
sc
.avroFile[Artist](args("artists"))
.keyBy(_.getArtistId)
.hashJoin(musicLabels)
.map { case (artistId, (artist, label)) =>
    (
        artistId,
        businessLogic(artist, label)
    )
    }
```

sc.run()

Bread & butter pipelines

A large majority of pipelines are written in Scio

Cake mix pipelines

Just add water

Data profiling

schedule: hourly
docker_image: grc.io/data-profiling/1.2.3@sha256:foo
docker_args:

- wrap-luigi
- --module
- luigi_tasks
- ProfileRunner
- --input-dataset
- Impressions.gcs
- --partitioning
- hours
- --project
- my-cloud-project

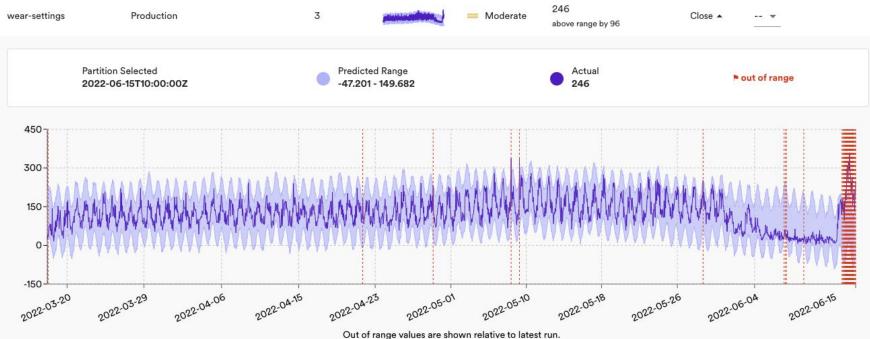
Data profiling (pt 2)

-	
8.7.4	2.6G
3.7.4	1.3G
l.1.89	163M
3.7.4	120M
3.7.4	98M
3.6.8	61M
1.1.8 <mark>8</mark>	51M
3.7.4	43M
3.6. <mark>4</mark>	35M
3.7.4	34M
2022	27M
web	26M
3.7.3	26M

×

Data profiling (pt 3)

Field Name End Date Start Date element_detail_hash * 2022-07-06 20:00 UTC 2022-07-13 20:00 UTC Approx. Distinct CALCULATIONS 3.1G Approx. Top K Approx. Distinct 2.7G-**Empty String** Non-Empty String 2.3G Max Length Min Length 1.8G 1.4G 2022-07-07 2022-07-08 2022-07-09 2022-07-10 2022-07-10 2022-07-11 2022-07-12 2022-07-13 2022-07-13


Historical Profiling

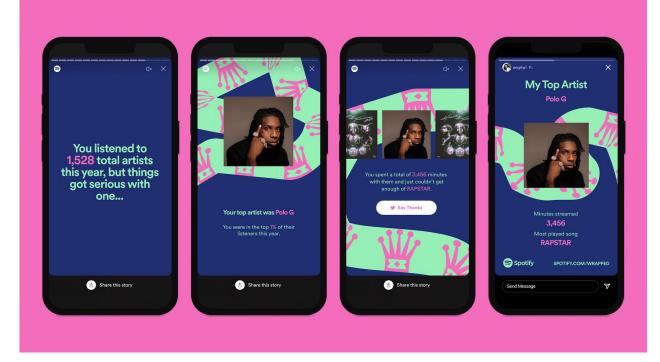
Analyze metrics for a field over time by selecting a date range below.

Austin, 2022

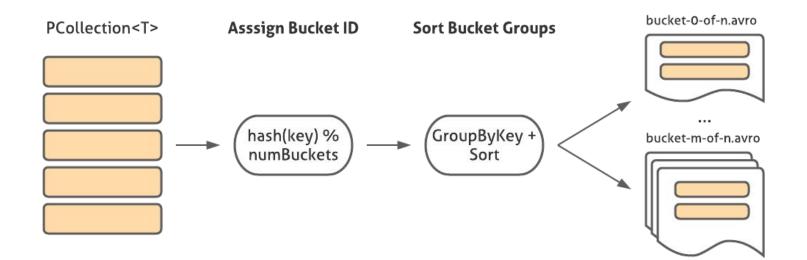
Anomaly detection

The difficult stuff

Scale, complexity, edge cases



Case by case


Spotify Wrapped

Scio + Sort Merge Bucket

TL;DR

We use Beam at the highest level of abstraction that fits the use case

- Beam SDK
- Scio Scala API
- Plug-and-play images

Thanks!

Check out the Scio workshop on Wednesday

Beam @Twitter Evaluation, Adoption, Migration and future.

Beam : Adoption, Current state and future @Twitter

Lohit VijayaRenu @lohitvijayarenu

Data Processing @Twitter

Twitter Timelines Recommendations Analytics Ad products Trends, Search, Explore Many more... or Everything

Technology - Trending #SpaceLaunch Trending with NASA

Sports - LIVE Playoffs are kicking off right now Trending with Los Angeles, Miami

Trending in United States #Caturday 21.9K Tweets

Trending in United States #WearAMask 811K Tweets

Technology

Streaming : Apache Storm, Apache Heron
Batch : Scalding, Spark, Apache Tez, Apache Hadoop
SQL : Presto, HIVE
Cloud : Google Cloud Platform (BQ, DF, GCS...)

Open Source

Twitter initiated projects : TwitterOSS Contributions & Adoption : Apache Software, Linux Foundation, Python Foundation, Scala Center...

Every day challenges

Data pipelines

50k+

Data Volume processed

Data across storage systems

Events processed

7+Tri

200+PB

Continuous improvement

Data Processing requirements

- Stream vs Batch (Unification)
- Modern execution framework
- Newer technologies (Spark, Tez, Flink, Beam)
- Newer API (Scio, Beam, Spark, SQL, Streaming SQL)
- Easier adoption (Metrics, configuration, debugging tools, deployment and support)

Data Processing Evaluation

 \approx

API Unified and modern API, API Support, Language Support, Conversion tools from existing to new API.

Platform Offering Platform availability, support and stability. Evaluation of different runners.

Platform Integration Integrate with other tools, SQL, tabular, Data formats, Industry adoption.

Twitter Integration Security, Orchestration, Deployment, Workbook

integration, Chargeback, Monitoring, Cost.

Model use cases

Production vs Ad hoc stream and batch processing, ML workloads, Analytics. Right tool for customer use case.

Why Beam is attractive

- Unified API, Modern Execution frameworks
- Flexibility of different runners and how it affects company strategy
- Attractive for multi cloud support
- Different programming languages
- Strong open source community and support

Streaming Adoption Ad Engagement Analytic Platform

- Ad Engagement pipelines built on lambda architecture
- Stream processing millions of events per second
- Migrate Apache Heron pipelines to Apache Beam
- Utilize same API for both batch and streaming components
- Increased **developer velocity** and cleaner abstraction

Batch Adoption Experimentation Pipelines

- Modernizing Twitter Experimentation Pipelines
- Scalding based hard to maintain, debug and scale
- Easier programming paradigm
- Increase developer productivity
- Pipeline runtime from days to hours

Challenges

- Language :SCIO, Java, Python
- Migration : Variety and Scale
- **Custom libraries** : Use case specific logic
- Long term support : Compare against other APIs
- **Twitter Integration** : Metadata, deployment, monitoring...

Current Use cases

- Machine Learning & Feature Engineering pipelines
 Curated data and metrics calculation
- Data Replication and Ingestion framework
- Real Time Analytics and Monitoring
- Ad Analytics platform
- Twitter Health monitoring pipelines
- Product learning platform

Future for Beam @Twitter

- Migration of all pipelines to Apache Beam
- Unifying streaming/batch and increase streaming use cases
- Integration tooling for data delivery, metadata and monitoring
- Self serve deployment and management
- Excited about community engagement and contributions

More at Beam Summit

- Talk to us about **opportunities**
- Tuesday, 19 14:00
 - <u>Log ingestion and data replication</u> <u>at Twitter</u> by Praveen Killamsetti & Zhenzhao Wang
- Tuesday, 19 17:15
 <u>Apache Beam backend for open</u> <u>source Scalding</u> by Navin Viswanath

Thank you!

<u>Twitter Career</u> <u>Twitter Engineer Blog</u> <u>Twitter Open Source</u>

