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LiveBox
(Residential gateway)

WiFi ExtenderSet Top Box

Figaro probes collects various logs from Orange France home devices for retail customers :
● CPU/Mem usage
● Power consumption
● Temperature sensors
● Boot stats
● Process crash
● WAN and Homelan stats
● WiFi stats
● VoIP/VoWiFi stats

The FigaroSI use case
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The FigaroSI use case
Performed operations :

● parse and ingest Figaro probes data (this is the topic of this presentation)
● computes daily KPIs
● enriches data
● delivers information to external systems 

Execute proactive actions 
(reboot, push config)

Provide diagnostics labels for the 
customer service

Provide KPIs for self-help 
troubleshooting through the “Orange 

et Moi” application 

Purposes :
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The FigaroSI use case
One of the main issues is the large volume of these logs : 

● 15.6 million Orange France devices with Figaro probe
● 70 million enduser WiFi devices
● 140 billion logs per day
● 33 TB BigQuery billable byte per day
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The Dataflow pipeline

Why Dataflow?
● Managed services: no infrastructure to manage, autoscaling
● Native IO connectors: GCS (file storage), Pub/sub (for continuous ingestion), BigQuery
● The Beam framework: can code in Java, concepts similar to Spark, can run the core of 

the code on other runners (Spark, Flink, etc.)

Transformations
● Combine 2 rows (header with compressed data representing 1 hour of logs from a 

device)
● Parse data (uncompress data, split data into logs, extract useful information)
● Adjust timezone (date format and timezone depends on device firmware version and 

device location [french overseas territories])
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Dataflow pipeline

Architecture

Raw Figaro Data
GCS

Pub/Sub Read notifications

Read files

Process data

Write to BQ

BigQueryOBJECT_FINALIZE
notification (new file)

Pub/Sub
subscription
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● Stopped using insertIds()
=> performance ok, but without leeway (close to the 1 GB/s limit)

Initial choices
● Files arrive about every minute: chose a streaming job
● Default BigQueryIO in streaming jobs: the legacy streaming API

=> performance not sufficient

Pipeline choices

First improvements
● Activation of auto sharding (requires Streaming Engine)

=> performance improved, but hit the 100MB/s limit
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rows.apply(

  "Write to BigQuery",

  BigQueryIO.writeTableRows()

    .to(String.format("%s:%s.%s", project, dataset, table))

    .withSchema(schema)

    .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)

    .withWriteDisposition(WriteDisposition.WRITE_APPEND)

    .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)

);

rows.apply(

  "Write to BigQuery",

  BigQueryIO.writeTableRows()

    .to(String.format("%s:%s.%s", project, dataset, table))

    .withSchema(schema)

    .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)

    .withWriteDisposition(WriteDisposition.WRITE_APPEND)

    .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)

    .withAutoSharding()

);

rows.apply(

  "Write to BigQuery",

  BigQueryIO.writeTableRows()

    .to(String.format("%s:%s.%s", project, dataset, table))

    .withSchema(schema)

    .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)

    .withWriteDisposition(WriteDisposition.WRITE_APPEND)

    .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)

    .withAutoSharding()

    .ignoreInsertIds()

);



Initial choices
● Files arrive about every minute: chose a streaming job
● Default BigQueryIO in streaming jobs: the legacy streaming API

=> performance not sufficient

Pipeline choices

First improvements
● Activation of auto sharding (requires Streaming Engine)

=> performance improved, but hit the 100MB/s limit
● Stopped using insertIds()

=> performance ok, but without leeway (close to the 1 GB/s limit)
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$5.8m / year

First cost projections
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Switching to the BQ 
Storage Write API

2 3

The journey timeline

Tuning the Dataflow 
configuration

1

Helping the 
autoscaler

Optimizing 
Beam code

4 5

Reconsidering 
batch
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Disclaimer: we recently re-ran tests to 
confirm gains for each step.
We grouped some of them for this 
presentation, so intermediate gains 
are only approximate.
We will say when gains from the 
project and from the re-run differed. 
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Switching to the 
BQ Storage Write 

API

2 3

The journey timeline

Tuning the Dataflow 
configuration

1

Helping the 
autoscaler

Optimizing 
Beam code

4 5

Reconsidering 
batch
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1. Switching to the BQ Write Storage API

Load API

● For batch loads
● Free with the shared slot pool
● Buy PIPELINE slots for guaranteed capacity

(Legacy) streaming API

Storage write API

First, let’s have a look at the available APIs to load data into BQ.

● For streaming loads
● Pay per ingested volume (0.01$/200MB in US multiregion)

● For batch loads & streaming loads
● Pay (half) per ingested volume (0.025$/1GB in US multiregion)
● New capabilities
● Recommended for streaming pipelines and high-performance 

batch pipelines
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Action

1

Use the BigQuery 
Write Storage API 

instead of the 
(legacy) BQ 

streaming API

Rationale

2

This API is x2 cheaper, 
does not have the 1GB/s 
limit, is performant, has 
exactly-once ingestion. 

Impact
4

Fewer workers needed 
(decreased RAM and CPU by 

55%), ingestion costs decreased 
by 85%. Overall a 68% 

decrease. Increasing the number 
of streams did not bring 

improvement.

3

Obstacles 

Limit on regional tables 
(300 MB/s), no 

autosharding, limited 
documentation (number 
of streams is the one in 
your code * the number 

of tables written to)
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1. Switching to the BQ Write Storage API      Step 1/2

BigQueryIO.writeTableRows()

    .to(XXX).withSchema(XXX).withCreateDisposition(XXX).withWriteDisposition(XXX)

    .withMethod(BigQueryIO.Write.Method.STORAGE_WRITE_API)

    .withTriggeringFrequency(Duration.standardSeconds(30))

    .withNumStorageWriteApiStreams(90)



Action

1

For the sake of 
completeness, tried 

the BQ load API.

Rationale

2

This API is free.

Impact
4

None (rollbacked).

3

Obstacles 

The performance was 
insufficient: the latency 

kept increasing.
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1. Switching to the BQ Write Storage API      Step 2/2

BigQueryIO.writeTableRows()

    .to(XXX).withSchema(XXX).withCreateDisposition(XXX).withWriteDisposition(XXX)

    .withMethod(BigQueryIO.Write.Method.FILE_LOADS)

    .withTriggeringFrequency(Duration.standardMinutes(2))



1. Switching to the BQ Write Storage API

● For high throughput, use the BQ Storage Write API with a multiregional 
destination table.

● As long as autosharding is not available, experiment with your number 
of streams: higher is not always better.

● More generally, make sure you are calling and using your external 
systems as optimally as possible. 

Keep in mind
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Switching to the BQ 
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow 
configuration

1

Helping the 
autoscaler

Optimizing 
Beam code

4 5

Reconsidering 
batch
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Machines configuration
● Machine family (n1, n2, ...) can be changed without cost change.
● Many sizes (n2-standard-8, n2-standard-16, …) can be used.
● Number of threads can be chosen (e.g. default in Java: 300 

threads per vCPU for streaming jobs, 1  thread per vCPU for 
batch jobs)

Streaming engine
Dataflow shuffle
Dataflow prime

What configuration can we change?

● Streaming Engine moves state & shuffle to a backend service 
(smoother autoscaling, smaller machines required, less disk 
used)

● Dataflow shuffle is similar for batch jobs (smaller machines, 
performance improvements).

● Dataflow prime enables vertical autoscaling (for streaming 
Python) and right fitting.

2. Tuning Dataflow configuration
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2. Tuning Dataflow configuration      Step 1/4

Action

1

Change family type 
from n1 to n2.

Rationale

2

N2 machines have a 
more recent CPU and 
vCPUs cost the same. 

Impact
4

During the project, we observed 
upscaling became less 

aggressive, which improved the 
average number of workers. 
During the re-run, we did not 
observe any improvement.

3

Obstacles 

No obstacle found
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--workerMachineType=n2-standard-16



Action

1

Change machine 
size from 

n2-standard-16 to 
n2-standard-8

Rationale

2

CPU and RAM might be 
underutilized (metrics 

suggested that CPU was 
not the limiting factor).

Impact
4

Slight impact on the number of 
workers (we estimated a 5% 

decrease in cost).

3

Obstacles 

No obstacle found
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2. Tuning Dataflow configuration      Step 2/4

--workerMachineType=n2-standard-8



Action

1

Try different number 
of threads (more 
than 300 and less 

than 300)

Rationale

2

The default 
parallelization might be 
tuned in order to better 

utilize vCPUs.

Impact
4

No impact.
Other use cases can see impact 

from doing this, in particular 
batch jobs.

3

Obstacles 

No obstacle found
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2. Tuning Dataflow configuration      Step 3/4

--numberOfWorkerHarnessThreads=300



Action

1

Disabled the 
Streaming Engine.

Rationale

2

Streaming engine is 
priced by the volume of 
shuffled data. We might 
need more workers but 

the cost can be 
decreased.

Impact
4

At the time of the project, we 
decreased costs by about 10% 

by switching it off. During re-run, 
we did not see an improvement.

3

Obstacles 

No obstacle found
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2. Tuning Dataflow configuration      Step 4/4

--enableStreamingEngine=false



2. Tuning Dataflow configuration

● Your mileage may vary: some configuration changes may have big 
effects on some pipelines and no effect on others. Optimizing will 
require testing.

Keep in mind
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Switching to the BQ 
Storage Write API

~ 68% gain

2 3

The journey timeline
Tuning the Dataflow 

configuration
~ 5% gain

1

Helping the 
autoscaler

Optimizing 
Beam code

4 5

Reconsidering 
batch
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3. Optimizing Beam code

Following coding
best practices

● Filter first (especially before shuffle operations)
● Do not instantiate your costly operations (regex compilation, database 

connections, etc.) in the processElement method. Rather use the setUp 
method.

The way you code your pipelines can have a huge impact on performance/cost.
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static class MatchWordWithRegexFn extends DoFn<String, String> {

  @Setup

  public void setup() {

    Pattern.compile(regexp)

 

 @ProcessElement

  public void processElement(@Element String word, OutputReceiver<String> out) {

    Pattern.compile(regexp)

  }

}

yes

no



3. Optimizing Beam code

Following coding
best practices

● Filter first (especially before shuffle operations)
● Do not instantiate your costly operations (regex compilation, database 

connections, etc.) in the processElement method. Rather use the setUp 
method.

The way you code your pipelines can have a huge impact on performance/cost.

32

● Use efficient coders (e.g not SerializableCoder, for Java).
● Use side inputs instead of CoGroupByKey when one side of the join is 

small.
● Be aware of stage fusion, small key space and data skew

PCollection A

  ParDo

PCollection B

Stage fusion with high fanout transform

10 keys processed on this 
worker with 10 elements 
each

10 keys processed on this 
worker with 10000 element 
each

Generates 1000 output 
elements for 1 input element

Skewed data

Worker 1
KV{“America”: [100000 elements] 

Worker 2
KV{“Europe”: [100 elements] 

Worker 3
KV{“Africa”: [100 elements] 

GroupByKey



3. Optimizing Beam code

Following coding
best practices

● Filter first (especially before shuffle operations)
● Do not instantiate your costly operations (regex compilation, database 

connections, etc.) in the processElement method. Rather use the setUp 
method.

The way you code your pipelines can have a huge impact on performance/cost.
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● If possible, do not use non-distributable compressed files like gzip.
● Be careful with excessive logging.
● Java is usually more performant than Python.

● Use efficient coders (e.g not SerializableCoder, for Java).
● Use side inputs instead of CoGroupByKey when one side of the join 

is small.
● Be aware of stage fusion, small key space and data skew



3. Optimizing Beam code

Profiling your code

You can use code profiling in order to finely determine CPU/memory bottlenecks.

● Use the flag to profile the code: 
--dataflowServiceOptions=enable_google_cloud_profiler 

● Enables to use directly the Cloud Profiler on GCP 
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3. Optimizing Beam code   Step 1/1

Action

1

Profiled the code 
and improved the 

most CPU-intensive 
parts (mostly regular 

expressions)

Rationale

2

We may need fewer 
workers if our code 

consumes fewer CPU 
cycles.

Impact
4

We saw an impact on vCPU-time 
consumed. During the project, 

we did not see a significant 
decrease in number of workers, 
but we did in the re-run (about 

16% cost decrease).

3

Obstacles 

No obstacle found
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● The way you code your pipeline can have a big impact on performance 
& cost.

● Profiling your code can complement following best practices.

● Using metrics from the Dataflow UI can also help you determine where 
you should focus your efforts.

Keep in mind

3. Optimizing Beam code
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Switching to the BQ 
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow 
configuration

~ 5% gain

1

Helping the 
autoscaler

Optimizing 
Beam code
~ 16% gain

4 5

Reconsidering 
batch
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4. Helping the autoscaler

Autoscaler decisions
(streaming)

● Scales up when average CPU utilization is > 20% and the 
backlog is > 15 seconds for a couple of minutes.

● Scales down if the average CPU utilization is < 75% and the 
backlog is < 10 seconds for a couple of minutes.

Help the autoscaler

The autoscaler follows a certain algorithm, you may have to help it a little to adapt to your case.

● Streaming Engine usually provides  a more reactive and 
smoother autoscaling.

● Setting a good number of initial and max workers is a good idea.
● Setting a minimum number of workers is experimental with 

--experiment=min_num_workers=N
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4. Helping the autoscaler   Step 1/1

Action

1

Experimented and 
set a good number 

of initial & max 
number of workers

Rationale

2

The autoscaler behavior 
is not necessarily the 

best for us, it scales too 
much and stays high for 
a long time. We are ok to 
have some peak latency.

Impact
4

Increasing the min number of 
workers to 100 and leaving the 
max at 300 decreased costs by 

about 30%. Further tuning of 
these parameters (70 initial and 
70 max workers) yielded another 

12% of decrease in costs.

3

Obstacles 

No obstacle found
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--numWorkers=70

--maxNumWorkers=70



● Even if the autoscaler is very useful, it is not yet very customizable.

● Helping the autoscaler to have a behavior that matches your use case 
can decrease costs significantly.

Keep in mind

4. Helping the autoscaler
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Switching to the BQ 
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow 
configuration

~ 5% gain

1

Helping the 
autoscaler
~ 37% gain

Optimizing 
Beam code
~ 16% gain

4 5

Reconsidering 
batch
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5. Reconsidering batch

Streaming vs batch
● Streaming workers are 15% more expensive in Dataflow.
● Using a BQ load with a streaming job is possible but not efficient

Our use case
● We chose streaming for a technical reason: we thought batch 

loads would not be efficient enough for our throughput
● No business reason to choose streaming (we are ok with a few 

hours latency as long as we do not accumulate latency)

It is easy to switch between batch & streaming with Beam, and the cost might be quite different.
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5. Reconsidering batch      Step 1/1

Action

1

Change the IO to 
make a batch job, 

and use the BQ load 
API.

Rationale

2

If performance is 
sufficient, batch workers 

will be cheaper (15%) 
and BQ load API is free.

Impact
4

The job runs every 30 minutes 
and actually takes only 18mn 
with 30 workers (240 vCPU).

This removed the ingestion cost, 
and batch workers run less time 

and are less expensive.
This decreased costs by 68%.

3

Obstacles 

No obstacle found
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5. Reconsidering batch

● If your business case does not require low latency processing, do not 
assume you need streaming for throughput reasons. 

Keep in mind
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Switching to the BQ 
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow 
configuration

~ 5% gain

1

Helping the 
autoscaler
~ 37% gain

Optimizing 
Beam code
~ 16% gain

4 5

Reconsidering 
batch

~ 62% gain
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Final win by keeping a streaming pipeline

Decreased 
costs by ~5x
(~$5.8m/y to ~$1.2m/y)
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Final win by switching to a batch pipeline

Decreased 
costs by 13x+

(~$5.8m/y to ~$440k/y)

Now the cost distribution is around 35% for the Dataflow batch pipeline and 
65% for BigQuery storage (1.15PB for 35 days)

49



Some leads we did not need to try on this use case:
● Using FlexRS
● Using Dataflow prime

Your mileage will vary
● Some steps that had a minor impact on this pipeline might be major for yours, depending 

on the pipeline and the order in which you take the steps. It did for us!

Final thoughts

Experiment, experiment, experiment.
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Questions?

www.linkedin.com/in/thomassauvagnat
www.linkedin.com/in/jeremiegomez

http://www.linkedin.com/in/thomassauvagnat
http://www.linkedin.com/in/jeremiegomez

