
Austin, 2022

Optimizing a Dataflow
pipeline for cost efficiency:
lessons learned at Orange
By Jérémie Gomez and Thomas Sauvagnat

Jérémie Gomez
Data Cloud Consultant

Meet the team

Thomas Sauvagnat
Data engineer

Use case1

Architecture & initial decisions

4

The journey3
Agenda

Final results

2

01Use case

5

LiveBox
(Residential gateway)

WiFi ExtenderSet Top Box

Figaro probes collects various logs from Orange France home devices for retail customers :
● CPU/Mem usage
● Power consumption
● Temperature sensors
● Boot stats
● Process crash
● WAN and Homelan stats
● WiFi stats
● VoIP/VoWiFi stats

The FigaroSI use case

6

The FigaroSI use case
Performed operations :

● parse and ingest Figaro probes data (this is the topic of this presentation)
● computes daily KPIs
● enriches data
● delivers information to external systems

Execute proactive actions
(reboot, push config)

Provide diagnostics labels for the
customer service

Provide KPIs for self-help
troubleshooting through the “Orange

et Moi” application

Purposes :

7

The FigaroSI use case
One of the main issues is the large volume of these logs :

● 15.6 million Orange France devices with Figaro probe
● 70 million enduser WiFi devices
● 140 billion logs per day
● 33 TB BigQuery billable byte per day

8

02Architecture & initial
decisions

The Dataflow pipeline

Why Dataflow?
● Managed services: no infrastructure to manage, autoscaling
● Native IO connectors: GCS (file storage), Pub/sub (for continuous ingestion), BigQuery
● The Beam framework: can code in Java, concepts similar to Spark, can run the core of

the code on other runners (Spark, Flink, etc.)

Transformations
● Combine 2 rows (header with compressed data representing 1 hour of logs from a

device)
● Parse data (uncompress data, split data into logs, extract useful information)
● Adjust timezone (date format and timezone depends on device firmware version and

device location [french overseas territories])

10

Dataflow pipeline

Architecture

Raw Figaro Data
GCS

Pub/Sub Read notifications

Read files

Process data

Write to BQ

BigQueryOBJECT_FINALIZE
notification (new file)

Pub/Sub
subscription

11

● Stopped using insertIds()
=> performance ok, but without leeway (close to the 1 GB/s limit)

Initial choices
● Files arrive about every minute: chose a streaming job
● Default BigQueryIO in streaming jobs: the legacy streaming API

=> performance not sufficient

Pipeline choices

First improvements
● Activation of auto sharding (requires Streaming Engine)

=> performance improved, but hit the 100MB/s limit

12

rows.apply(

 "Write to BigQuery",

 BigQueryIO.writeTableRows()

 .to(String.format("%s:%s.%s", project, dataset, table))

 .withSchema(schema)

 .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)

 .withWriteDisposition(WriteDisposition.WRITE_APPEND)

 .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)

);

rows.apply(

 "Write to BigQuery",

 BigQueryIO.writeTableRows()

 .to(String.format("%s:%s.%s", project, dataset, table))

 .withSchema(schema)

 .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)

 .withWriteDisposition(WriteDisposition.WRITE_APPEND)

 .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)

 .withAutoSharding()

);

rows.apply(

 "Write to BigQuery",

 BigQueryIO.writeTableRows()

 .to(String.format("%s:%s.%s", project, dataset, table))

 .withSchema(schema)

 .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)

 .withWriteDisposition(WriteDisposition.WRITE_APPEND)

 .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)

 .withAutoSharding()

 .ignoreInsertIds()

);

Initial choices
● Files arrive about every minute: chose a streaming job
● Default BigQueryIO in streaming jobs: the legacy streaming API

=> performance not sufficient

Pipeline choices

First improvements
● Activation of auto sharding (requires Streaming Engine)

=> performance improved, but hit the 100MB/s limit
● Stopped using insertIds()

=> performance ok, but without leeway (close to the 1 GB/s limit)

13

$5.8m / year

First cost projections

14

03The journey

Switching to the BQ
Storage Write API

2 3

The journey timeline

Tuning the Dataflow
configuration

1

Helping the
autoscaler

Optimizing
Beam code

4 5

Reconsidering
batch

16

Disclaimer: we recently re-ran tests to
confirm gains for each step.
We grouped some of them for this
presentation, so intermediate gains
are only approximate.
We will say when gains from the
project and from the re-run differed.

17

Switching to the
BQ Storage Write

API

2 3

The journey timeline

Tuning the Dataflow
configuration

1

Helping the
autoscaler

Optimizing
Beam code

4 5

Reconsidering
batch

18

1. Switching to the BQ Write Storage API

Load API

● For batch loads
● Free with the shared slot pool
● Buy PIPELINE slots for guaranteed capacity

(Legacy) streaming API

Storage write API

First, let’s have a look at the available APIs to load data into BQ.

● For streaming loads
● Pay per ingested volume (0.01$/200MB in US multiregion)

● For batch loads & streaming loads
● Pay (half) per ingested volume (0.025$/1GB in US multiregion)
● New capabilities
● Recommended for streaming pipelines and high-performance

batch pipelines

19

Action

1

Use the BigQuery
Write Storage API

instead of the
(legacy) BQ

streaming API

Rationale

2

This API is x2 cheaper,
does not have the 1GB/s
limit, is performant, has
exactly-once ingestion.

Impact
4

Fewer workers needed
(decreased RAM and CPU by

55%), ingestion costs decreased
by 85%. Overall a 68%

decrease. Increasing the number
of streams did not bring

improvement.

3

Obstacles

Limit on regional tables
(300 MB/s), no

autosharding, limited
documentation (number
of streams is the one in
your code * the number

of tables written to)

20

1. Switching to the BQ Write Storage API Step 1/2

BigQueryIO.writeTableRows()

 .to(XXX).withSchema(XXX).withCreateDisposition(XXX).withWriteDisposition(XXX)

 .withMethod(BigQueryIO.Write.Method.STORAGE_WRITE_API)

 .withTriggeringFrequency(Duration.standardSeconds(30))

 .withNumStorageWriteApiStreams(90)

Action

1

For the sake of
completeness, tried

the BQ load API.

Rationale

2

This API is free.

Impact
4

None (rollbacked).

3

Obstacles

The performance was
insufficient: the latency

kept increasing.

21

1. Switching to the BQ Write Storage API Step 2/2

BigQueryIO.writeTableRows()

 .to(XXX).withSchema(XXX).withCreateDisposition(XXX).withWriteDisposition(XXX)

 .withMethod(BigQueryIO.Write.Method.FILE_LOADS)

 .withTriggeringFrequency(Duration.standardMinutes(2))

1. Switching to the BQ Write Storage API

● For high throughput, use the BQ Storage Write API with a multiregional
destination table.

● As long as autosharding is not available, experiment with your number
of streams: higher is not always better.

● More generally, make sure you are calling and using your external
systems as optimally as possible.

Keep in mind

22

Switching to the BQ
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow
configuration

1

Helping the
autoscaler

Optimizing
Beam code

4 5

Reconsidering
batch

23

Machines configuration
● Machine family (n1, n2, ...) can be changed without cost change.
● Many sizes (n2-standard-8, n2-standard-16, …) can be used.
● Number of threads can be chosen (e.g. default in Java: 300

threads per vCPU for streaming jobs, 1 thread per vCPU for
batch jobs)

Streaming engine
Dataflow shuffle
Dataflow prime

What configuration can we change?

● Streaming Engine moves state & shuffle to a backend service
(smoother autoscaling, smaller machines required, less disk
used)

● Dataflow shuffle is similar for batch jobs (smaller machines,
performance improvements).

● Dataflow prime enables vertical autoscaling (for streaming
Python) and right fitting.

2. Tuning Dataflow configuration

24

2. Tuning Dataflow configuration Step 1/4

Action

1

Change family type
from n1 to n2.

Rationale

2

N2 machines have a
more recent CPU and
vCPUs cost the same.

Impact
4

During the project, we observed
upscaling became less

aggressive, which improved the
average number of workers.
During the re-run, we did not
observe any improvement.

3

Obstacles

No obstacle found

25

--workerMachineType=n2-standard-16

Action

1

Change machine
size from

n2-standard-16 to
n2-standard-8

Rationale

2

CPU and RAM might be
underutilized (metrics

suggested that CPU was
not the limiting factor).

Impact
4

Slight impact on the number of
workers (we estimated a 5%

decrease in cost).

3

Obstacles

No obstacle found

26

2. Tuning Dataflow configuration Step 2/4

--workerMachineType=n2-standard-8

Action

1

Try different number
of threads (more
than 300 and less

than 300)

Rationale

2

The default
parallelization might be
tuned in order to better

utilize vCPUs.

Impact
4

No impact.
Other use cases can see impact

from doing this, in particular
batch jobs.

3

Obstacles

No obstacle found

27

2. Tuning Dataflow configuration Step 3/4

--numberOfWorkerHarnessThreads=300

Action

1

Disabled the
Streaming Engine.

Rationale

2

Streaming engine is
priced by the volume of
shuffled data. We might
need more workers but

the cost can be
decreased.

Impact
4

At the time of the project, we
decreased costs by about 10%

by switching it off. During re-run,
we did not see an improvement.

3

Obstacles

No obstacle found

28

2. Tuning Dataflow configuration Step 4/4

--enableStreamingEngine=false

2. Tuning Dataflow configuration

● Your mileage may vary: some configuration changes may have big
effects on some pipelines and no effect on others. Optimizing will
require testing.

Keep in mind

29

Switching to the BQ
Storage Write API

~ 68% gain

2 3

The journey timeline
Tuning the Dataflow

configuration
~ 5% gain

1

Helping the
autoscaler

Optimizing
Beam code

4 5

Reconsidering
batch

30

3. Optimizing Beam code

Following coding
best practices

● Filter first (especially before shuffle operations)
● Do not instantiate your costly operations (regex compilation, database

connections, etc.) in the processElement method. Rather use the setUp
method.

The way you code your pipelines can have a huge impact on performance/cost.

31

static class MatchWordWithRegexFn extends DoFn<String, String> {

 @Setup

 public void setup() {

 Pattern.compile(regexp)

 @ProcessElement

 public void processElement(@Element String word, OutputReceiver<String> out) {

 Pattern.compile(regexp)

 }

}

yes

no

3. Optimizing Beam code

Following coding
best practices

● Filter first (especially before shuffle operations)
● Do not instantiate your costly operations (regex compilation, database

connections, etc.) in the processElement method. Rather use the setUp
method.

The way you code your pipelines can have a huge impact on performance/cost.

32

● Use efficient coders (e.g not SerializableCoder, for Java).
● Use side inputs instead of CoGroupByKey when one side of the join is

small.
● Be aware of stage fusion, small key space and data skew

PCollection A

 ParDo

PCollection B

Stage fusion with high fanout transform

10 keys processed on this
worker with 10 elements
each

10 keys processed on this
worker with 10000 element
each

Generates 1000 output
elements for 1 input element

Skewed data

Worker 1
KV{“America”: [100000 elements]

Worker 2
KV{“Europe”: [100 elements]

Worker 3
KV{“Africa”: [100 elements]

GroupByKey

3. Optimizing Beam code

Following coding
best practices

● Filter first (especially before shuffle operations)
● Do not instantiate your costly operations (regex compilation, database

connections, etc.) in the processElement method. Rather use the setUp
method.

The way you code your pipelines can have a huge impact on performance/cost.

33

● If possible, do not use non-distributable compressed files like gzip.
● Be careful with excessive logging.
● Java is usually more performant than Python.

● Use efficient coders (e.g not SerializableCoder, for Java).
● Use side inputs instead of CoGroupByKey when one side of the join

is small.
● Be aware of stage fusion, small key space and data skew

3. Optimizing Beam code

Profiling your code

You can use code profiling in order to finely determine CPU/memory bottlenecks.

● Use the flag to profile the code:
--dataflowServiceOptions=enable_google_cloud_profiler

● Enables to use directly the Cloud Profiler on GCP

34

3. Optimizing Beam code Step 1/1

Action

1

Profiled the code
and improved the

most CPU-intensive
parts (mostly regular

expressions)

Rationale

2

We may need fewer
workers if our code

consumes fewer CPU
cycles.

Impact
4

We saw an impact on vCPU-time
consumed. During the project,

we did not see a significant
decrease in number of workers,
but we did in the re-run (about

16% cost decrease).

3

Obstacles

No obstacle found

35

● The way you code your pipeline can have a big impact on performance
& cost.

● Profiling your code can complement following best practices.

● Using metrics from the Dataflow UI can also help you determine where
you should focus your efforts.

Keep in mind

3. Optimizing Beam code

36

Switching to the BQ
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow
configuration

~ 5% gain

1

Helping the
autoscaler

Optimizing
Beam code
~ 16% gain

4 5

Reconsidering
batch

37

4. Helping the autoscaler

Autoscaler decisions
(streaming)

● Scales up when average CPU utilization is > 20% and the
backlog is > 15 seconds for a couple of minutes.

● Scales down if the average CPU utilization is < 75% and the
backlog is < 10 seconds for a couple of minutes.

Help the autoscaler

The autoscaler follows a certain algorithm, you may have to help it a little to adapt to your case.

● Streaming Engine usually provides a more reactive and
smoother autoscaling.

● Setting a good number of initial and max workers is a good idea.
● Setting a minimum number of workers is experimental with

--experiment=min_num_workers=N

38

4. Helping the autoscaler Step 1/1

Action

1

Experimented and
set a good number

of initial & max
number of workers

Rationale

2

The autoscaler behavior
is not necessarily the

best for us, it scales too
much and stays high for
a long time. We are ok to
have some peak latency.

Impact
4

Increasing the min number of
workers to 100 and leaving the
max at 300 decreased costs by

about 30%. Further tuning of
these parameters (70 initial and
70 max workers) yielded another

12% of decrease in costs.

3

Obstacles

No obstacle found

39

--numWorkers=70

--maxNumWorkers=70

● Even if the autoscaler is very useful, it is not yet very customizable.

● Helping the autoscaler to have a behavior that matches your use case
can decrease costs significantly.

Keep in mind

4. Helping the autoscaler

40

Switching to the BQ
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow
configuration

~ 5% gain

1

Helping the
autoscaler
~ 37% gain

Optimizing
Beam code
~ 16% gain

4 5

Reconsidering
batch

41

42

5. Reconsidering batch

Streaming vs batch
● Streaming workers are 15% more expensive in Dataflow.
● Using a BQ load with a streaming job is possible but not efficient

Our use case
● We chose streaming for a technical reason: we thought batch

loads would not be efficient enough for our throughput
● No business reason to choose streaming (we are ok with a few

hours latency as long as we do not accumulate latency)

It is easy to switch between batch & streaming with Beam, and the cost might be quite different.

43

5. Reconsidering batch Step 1/1

Action

1

Change the IO to
make a batch job,

and use the BQ load
API.

Rationale

2

If performance is
sufficient, batch workers

will be cheaper (15%)
and BQ load API is free.

Impact
4

The job runs every 30 minutes
and actually takes only 18mn
with 30 workers (240 vCPU).

This removed the ingestion cost,
and batch workers run less time

and are less expensive.
This decreased costs by 68%.

3

Obstacles

No obstacle found

44

5. Reconsidering batch

● If your business case does not require low latency processing, do not
assume you need streaming for throughput reasons.

Keep in mind

45

04Final results

Switching to the BQ
Storage Write API

~ 68% gain

2 3

The journey timeline

Tuning the Dataflow
configuration

~ 5% gain

1

Helping the
autoscaler
~ 37% gain

Optimizing
Beam code
~ 16% gain

4 5

Reconsidering
batch

~ 62% gain

47

Final win by keeping a streaming pipeline

Decreased
costs by ~5x
(~$5.8m/y to ~$1.2m/y)

48

Final win by switching to a batch pipeline

Decreased
costs by 13x+

(~$5.8m/y to ~$440k/y)

Now the cost distribution is around 35% for the Dataflow batch pipeline and
65% for BigQuery storage (1.15PB for 35 days)

49

Some leads we did not need to try on this use case:
● Using FlexRS
● Using Dataflow prime

Your mileage will vary
● Some steps that had a minor impact on this pipeline might be major for yours, depending

on the pipeline and the order in which you take the steps. It did for us!

Final thoughts

Experiment, experiment, experiment.

50

Austin, 2022

Questions?

www.linkedin.com/in/thomassauvagnat
www.linkedin.com/in/jeremiegomez

http://www.linkedin.com/in/thomassauvagnat
http://www.linkedin.com/in/jeremiegomez

