
Austin, 2022

The Ray Beam Runner Project
A Vision for Unified Batch, Streaming, and ML

By Patrick Ames, Jiajun Yao, and Chandan Prasad



Austin, 2022

Why do we need another 
Beam Runner?

2



Austin, 2022

Recent Machine Learning Trends
ML workflows are increasingly distributed and integrated with data analytics: 

● 2012-2018: 12.5X yearly increase in ML compute demands (from ~0.001 
petaflop/s-day to >1000 petaflop/s-day)

● 2015: Moore’s Law is slowing (doubling transistor counts every ~20 years)
● 2015 to 2019: 10X/1.5 year increase in ML memory demands
● 2019—2022: An increasing percentage of ML and data science developers are 

doing data exploration and analysis

ML and data science developers also overwhelmingly prefer to work in Python. 
Good thing we have Apache Beam’s portability framework!

3



Austin, 2022 4

ML Workflow Stage Involvement 

Graph from SlashData, licensed under CC 4.0

https://creativecommons.org/licenses/by-nd/4.0/


● Python is the 2nd most popular 
language in 2022.

● Python is most popular with data 
science and ML developers.

● Java is least popular with data 
science and ML developers.

● We want to meet DS and ML 
developers where they’re at.

5

Graph from SlashData, licensed under CC 4.0

https://creativecommons.org/licenses/by-nd/4.0/


Austin, 2022

Portable & Unified Data Analytics
We’d like to close these data exploration and analysis gaps with Apache Beam 
because:

● Portability of code to and from existing Runners reduces barriers to adoption
● We want a unified API to integrate ML workflows with batch and streaming
● Leveraging the Apache Beam SDK reduces undifferentiated heavy-lifting
● There was demand from the Ray open source community

6



Austin, 2022

A Runner for DS and ML Devs
We want our Beam Runner to integrate natively with Pythonic tools that data 
science and ML developers know and love like:
● Pandas
● NumPy
● Dask
● PyArrow
● Scikit-learn
● PyTorch
● TensorFlow
● And many more…

7



Austin, 2022

Unified Batch, Streaming, and ML
We also want a unified distributed compute framework to author and run mixed 
purpose batch, streaming, and ML workflows that let’s us:

● Run batch, streaming, and ML on the same cluster with shared memory.
● Write distributed batch, streaming, and ML code in the same Python program.
● Run the same code locally and on a distributed cluster.
● Remove inefficiencies inherent to integrating multiple distributed systems.
● Reuse solutions to common problems like task scheduling, fault tolerance, 

SerDe, object storage, and cluster autoscaling/management/portability.

We didn’t feel like any existing Runner completely met our wish list…

8



Austin, 2022

Why Ray?

9



Austin, 2022

High-Level Overview
Ray provides a rich set of open source libraries for general purpose distributed
computing, machine learning, data science, and workflow management:

● Ray Core
● General Purpose Distributed Programming

● Ray Libraries
● End-to-end Distributed Machine Learning Workflow Development
● Cluster Management and Autoscaling (on AWS, GCP, Azure, Kubernetes, YARN, Slurm)
● Integrated with Tensorflow, PyTorch, and more.

● Ray Ecosystem
● Machine Learning (Scitkit-learn, XGBoost, Horovod, Hugging Face, Ludwig)
● Data Science (Dask, Mars, Modin)
● Workflow Management (Airflow)

10



Austin, 2022

Unified Distributed Compute
Ray Core provides simple but powerful building blocks for distributed computing:

● Tasks
● Stateless distributed functions.

● Actors
● Stateful distributed classes with mutable attributes.

● Distributed Object Store (Plasma)
● Immutable Object Storage
● Zero-Copy Intranode Object Exchange

● Bottom-up Distributed Scheduler
● Horizontally Scalable
● Supports Dynamic Task Graphs
● Favors Local Scheduling First

11



Austin, 2022

Example Task

12



Austin, 2022

Example Actor

13



Austin, 2022

Promising for Batch & Streaming
Early experiments with Ray have shown impressive potential in the domain of 
batch and streaming data processing:

● >90% latency and efficiency improvements vs. Spark for petabyte-scale batch 
change-data-capture workloads (CDC)
● 2021 Ray Summit Presentation: Petabyte Scale Datalake Table Management with Ray

● Ability to scale production workloads across 200,000-CPU clusters in Ant 
Financial’s unified batch/streaming/ML Fusion Engine.
● 2020 Ray Summit Presentation: Buidling a Fusion Engine With Ray

● 1.8X performance improvement vs. Spark on the 100TB TeraSort benchmark. 
● Exoshuffle Paper

14

https://www.youtube.com/watch?v=h7svj_oAY14
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group
https://arxiv.org/pdf/2203.05072.pdf


Austin, 2022

When can I use it?

15



Austin, 2022

Current Project Status

Please pardon our dust. Here’s what we’re up to:

● Building the Ray Runner in Python with Apache Beam’s Portability Framework
● Currently test driving a single-process prototype around GitHub
● Developing foundational CI/CD pipelines and test suites
● Continuing to improve Ray Datasets and data ecosystem integrations

16



Austin, 2022

Next steps

● Transition our single-process runner prototype to distributed multi-process

● Latency, efficiency, and scalability optimizations for the distributed runner

● Ray ßà Beam Connectors

● Documentation, user guides, and blog posts

● Get a 1.0 release out the door in 2023!?

17



Austin, 2022

Getting Involved

18



Austin, 2022

GitHub
Visit us on GitHub:

● Project Home: https://github.com/ray-project/ray_beam_runner
● Feel free to pick up an open issue
● Or create/review a pull request

19

https://github.com/ray-project/ray_beam_runner
https://github.com/ray-project/ray_beam_runner/issues
https://github.com/ray-project/ray_beam_runner/pulls


Austin, 2022

Slack
Or visit us on the Ray Community Slack:

● Join the Ray Community Slack
● Chat with us on the #beam channel
● Review the latest updates in our pinned progress and design docs

20

https://docs.google.com/forms/d/e/1FAIpQLSfAcoiLCHOguOm8e7Jnn-JJdZaCxPGjgVCvFijHB5PLaQLeig/viewform


Austin, 2022

Thanks!

21


