
Building I/O connectors using
Splittable DoFns
Israel Herraiz, Miren Esnaola

A bit of history…
To connect to an unsupported data store in the Beam SDK, you need to create a custom I/O connector.

Until fairly recently there were 2 options for the implementation of a custom I/O.

Use the Source API.

1

2

Create a mini-pipeline made of the basic ParDo and GroupByKey
transforms (Bounded sources only and certain scenarios).

Connectors as mini-pipelines

Each of those steps is a ParDo, with a GroupByKey in between. For most runners the GroupByKey
allows the runner to use different number of workers and dynamic work rebalancing if supported.

Read from each of those parts

1

2

Split incoming data into parts to be read in parallel

For bounded data sources where data can be read in parallel, a mini-pipeline can be created
consisting of 2 steps:

Problem statement — Given a file glob as input, read the records in the files matching the pattern

reshuffle

Connectors as mini-pipelines

Create

glob: "~/data/**"
ParDo

(Get paths)
ParDo

(Reads records)
GroupByKey

Limitation — Some files might be much larger than others. The second ParDo may
have very long individual process calls and result in poor pipeline performance.

paths records

Problem statement — Given a Kafka topic as input, read the records in the partitions

Connectors as mini-pipelines

reshuffle

Create

topic: "my_topic"
ParDo

(Get partitions)
ParDo

(Reads records)
GroupByKey

partitions records

Impossible!! It would need to output an infinite number
of records per partition

Umm, that’s why I created the Source API, to overcome
these limitations…

Source API
Pros

● It allows the reading both bounded and unbounded data sources,
in parallel using multiple workers

● It allows checkpointing and resuming reads from unbounded data
sources.

● It provides advanced features such as progress reporting and
dynamic rebalancing (which together enable autoscaling) for
bounded sources,

● It supports reporting the source’s watermark and backlog for
unbounded sources.

Source API
Cons

● Coding involves a lot of boilerplate and is error-prone.,

● It does not compose well because a Source can appear only
at the root of a pipeline.

● It is not possible to reuse code between seemingly very
similar bounded and unbounded sources.

● It is not clear how to classify the ingestion of a very large and
continuously growing dataset. Ingesting its “already available”

How could I address the Source API limitations? What
about using DoFns as a starting point? They can be

applied to bounded or unbounded data sources, plus
they are composable…

… but DoFns have a few limitations

Splittability

Runner
interaction

Applying a DoFn to a single element is monolithic.

Runners apply a DoFn to an element as a “black box”.

I got it!!! The solution is a Splittable DoFn

What is a SDF?

A Splittable DoFn (SDF) is a generalization of a DoFn enabling Apache Beam
developers to create modular and composable I/O components. Although
that’s their main use, they can also be applied in other advanced non-I/O

scenarios.

How does a SDF work?
The processing of an element by a SDF is decomposed into a number of restrictions (potentially
infinite).

A restriction describes some part of the work to be done for the whole element.

Executing an SDF follows the following steps:

1. Each element is paired with a restriction (e.g. filename is paired with offset range representing
the whole file).

2. For each element the initial restriction is split into smaller restrictions.

3. The runner distributes element and restriction pairs to several workers.

4. Element and restriction pairs are processed in parallel. At this point, the runner can decide to
further split any restriction being processed.

How does a SDF work?

Pair E with R0

Split RX to
parallelize

processing of E
Process E, RXY

E, RX1
E, RX2

…
E, RXN

Is split
required?

Yes No

E’E

ReadFileFn(file) ReadFileFn(file, [0, 100))

initial
restriction

ReadFileFn(file, [0, 30))

Processing with restrictions
Bounded source

ReadFileFn(file, [30,70))

ReadFileFn(file, [70,100))

0 100

0 100

0 100

0 100

Processing with restrictions
Unbounded source

… …

ReadKafkaFn(topic_partition, [100, inf))

… …

[100, inf)

[100, 110) [110, inf)

primary
restriction

residual
restriction

split

SDF components

An advanced SDF, requiring watermark
control, needs 3 more components.

Restriction Restriction provider Restriction tracker

A basic SDF has 3 key components.

Watermark estimatorWatermark estimator providerWatermark state

SDF components
Basic SDF

Restriction ● It represents a subset of work for a given element.
● No specific class needs to be implemented to represent a restriction.

● It lets developers override default implementations used to generate
and manipulate restrictions.

● It extends from the RestrictionProvider base class.

Restriction tracker

Restriction provider

● It tracks for which parts of the restriction processing have been
completed.

● It extends from the RestrictionTracker base class.

SDF components
Basic SDF

There are built-in classes in the SDK that can be leveraged when
restrictions can be represented as an offset range. This is useful
when working with files.

OffsetRange
(Restriction)

OffsetRestrictionTracker
(RestrictionTracker)

1010111110111
1000000111000
1110000000111
1010101010101
0000001101010
1010101010101
0101…

SDF Components
Restriction provider
You must provide an implementation of a restriction extending from RestrictionProvider.

It is mandatory to override the following methods:

● inital_restriction(self, element)

It returns the initial restriction for the given element.

● create_tracker(self, restriction)

It returns a new tracker for the given restriction.

● restriction_size(self, element, restriction)

It returns the size of the given restriction. It must be a non-negative value.

SDF Components
Restriction provider
Other methods, that have default implementations could be overridden if necessary:

● restriction_coder(self)

It returns a coder for restrictions. Only required if it cannot be inferred at runtime.

● split(self, element, restriction)

It enables runners to perform initial splits to increase parallelism. It returns an iterator of restrictions.

● split_and_size(self, element, restriction)

It does the same as the split method but additional returns the size of each of the splits.

● truncate(self, element, restriction)

It truncates the provided restriction into a restriction representing a finite amount of work when the pipeline
is draining.

SDF Components
Restriction tracker
You must provide a restriction tracker extending from RestrictionTracker and overriding at least the following
methods:

● current_restriction(self)

It returns the restriction that the DoFn.process() call will be doing. It is subject to variations as the runner
might have concurrently split the work to be done. (See try_split method in the next slide).

● try_claim(self, position)

It must be used from within the DoFn.process method to notify that there is more work to process. If the
given position fits into the current restriction boundaries , it is marked as processed in the tracker and
returns True. If not, it returns False and the DoFn.process call must immediately return.

● check_done(self)

It checks whether the restriction has been fully processed. If so, it must return True. If not, it must raise a
ValueError error with an informative message.

● is_bounded(self)

It returns True if the current restriction represents a finite amount of work and False otherwise.

SDF Components
Restriction tracker
In addition to this, for streaming scenarios, overrides need to be provided for:

● try_split(self, fraction_of_remainder)

If possible, it splits the current restriction into a primary one and a residual one. Once the split is done:

○ The primary restriction becomes the current restriction for the DoFn.process() invocation.

○ The residual restriction is left to be executed by a separate DoFn.process() invocation (most
likely in a different process).

The fraction_of_remainder parameter provides an indication of the percentage of the work left to
process that the primary restriction should represent.

Note — Although not mandatory, it is also recommended to provide an override for this method in batch
scenarios.

SDF Components
Restriction tracker
Finally, it is also advisable to provide an implementation for the following method:

● current_progress(self)

It returns a RestrictionProgress object detailing the progress made processing the piece of work
represented by the current restriction. This information helps the runner make a better job at parallel
processing.

How do we code it?

To denote a DoFn as splittable the DoFn.process() method
should have exactly one parameter whose default value is an
instance of RestrictionParam.

This RestrictionParam instance can either be constructed:

● Explicitly passing an instance of a RestrictionProvider

● Not passing anything, in which case the DoFn will have to
extend from RestrictionProvider and provide overrides
for the required methods.

import beam
import os

class FileToWordsRestrictionProvider(beam.transforms.core.RestrictionProvider):

 def initial_restriction(self, file_name):
 return OffsetRange(0, os.stat(file_name).st_size)

 def create_tracker(self, restriction):
 return beam.io.restriction_trackers.OffsetRestrictionTracker()

 def restriction_size(self, file_name, restriction)
 return restriction.end - restriction.start

class FileToWordsFn(beam.DoFn):

 def process(
 self,
 file_name,
 tracker=beam.DoFn.RestrictionParam(FileToWordsRestrictionProvider())):
 # TODO

</>

import beam
import os

class FileToWordsFn(beam.DoFn, beam.transforms.core.RestrictionProvider):

 def initial_restriction(self, file_name):
 return OffsetRange(0, os.stat(file_name).st_size)

 def create_tracker(self, restriction):
 return beam.io.restriction_trackers.OffsetRestrictionTracker()

 def restriction_size(self, element, restriction):
 return restriction.end - restriction.start

 def process(self,
 file_name,
 tracker=beam.DoFn.RestrictionParam()):
 # TODO

</>

How do we code it?
The next is to proceed to the implementation of the DoFn.process method

1. Recover the current restriction using the parameter of type RestrictionParam passed as
argument.

2. Try to claim / lock the position.

3. Proceed to the processing associated to that element and restriction pair.

Things to take into consideration when writing the DoFn.process method:

● If the amount of work performed per input element is unbounded (e.g. reading messages from a
Kafka partition) the function needs to be annotated with with the decorator
beam.DoFn.unbounded_per_element.

● The current restriction can be modified in parallel in another thread, so it is not advised to store its
state locally.

● Only after successfully claiming a position should we produce any output and / or perform side
effects.

import beam
import os

class FileToWordsRestrictionProvider(beam.transforms.core.RestrictionProvider):

 def initial_restriction(self, file_name):
 return OffsetRange(0, os.stat(file_name).st_size)

 def create_tracker(self, restriction):
 return beam.io.restriction_trackers.OffsetRestrictionTracker()

 def restriction_size(self, file_name, restriction)
 return restriction.end - restriction.start

class FileToWordsFn(beam.DoFn):

 def process(self,
 file_name,
 tracker=beam.DoFn.RestrictionParam(FileToWordsRestrictionProvider())):

 with open(file_name) as file_handle:
 file_handle.seek(tracker.current_restriction.start())
 while tracker.try_claim(file_handle.tell()):
 yield read_next_record(file_handle)

</>

class FileToWordsRestrictionProvider(beam.transforms.core.RestrictionProvider):

 def initial_restriction(self, file_name):
 return OffsetRange(0, os.stat(file_name).st_size)

 def create_tracker(self, restriction):
 return beam.io.restriction_trackers.OffsetRestrictionTracker()

 def restriction_size(self, element, restriction):
 return restriction.end - restriction.start

 def split(self, file_name, restriction):

 split_size = 64 * (1 << 20)
 i = restriction.start
 while i < restriction.end - split_size:
 yield OffsetRange(i, i + split_size)
 i += split_size
 yield OffsetRange(i, restriction.end)

</>

INITIAL SPLITS

We split the file in blocks of 64 MiB to
increase parallelism

How do runners use sizing information?

The may use it:

● Before processing an element and restriction

To choose who processes the restrictions and how they are
processed so optimal balancing and parallelization can be
achieved.

● During the processing of an element and restriction

To choose which restrictions to split and who should process
them.

class FileToWordsRestrictionProvider(beam.transforms.core.RestrictionProvider):

 def initial_restriction(self, file_name):
 return OffsetRange(0, os.stat(file_name).st_size)

 def create_tracker(self, restriction):
 return beam.io.restriction_trackers.OffsetRestrictionTracker()

 def restriction_size(self, element, restriction):

 return restriction.end - restriction.start

</>

All restrictions have a cost proportional to file size

SIZING

class FileToWordsRestrictionProvider(beam.transforms.core.RestrictionProvider):

 def __init__(self, weights = {})
 self.weights = weights

 def initial_restriction(self, file_name):
 return OffsetRange(0, os.stat(file_name).st_size)

 def create_tracker(self, restriction):
 return beam.io.restriction_trackers.OffsetRestrictionTracker()

 def restriction_size(self,filename, restriction)

 base_name, extension = os.path.splittext(file_name)
 weight = self.weights[extension] if extension in self.weights else 1
 return weight * (restriction.end - restriction.start)

</>

The processing of files with certain extensions is computationally more
expensive so we reflect that in the restriction size

SIZING

What if we are stuck?
In some scenarios it can happen that the actual data necessary to complete the processing of an
element and restriction pair is not ready.

It is quite frequent with unbounded restrictions, but it can also happen with bounded ones if the
data is not yet ready.

A few examples are:

● We are reading messages from a Kafka topic partition and no new messages have been
published.

● We are watching a directory for new files and none have been added.

● The source system that we are reading data from is throttling.

What should I do???

What if we are stuck?

(*) The runner will try to honor the time to resume at, but without offering any guarantees.

The DoFn.process method should return signaling that the processing current restriction
is not done, optionally suggesting a time to resume at (*). This will improve resource

utilization as execution will continue for restrictions with work available.

class MySplittableDoFn(beam.DoFn):
 def process(self,
 element,
 restriction_tracker=beam.DoFn.RestrictionParam(MyRestrictionProvider())):
 current_position = restriction_tracker.current_restriction.start()
 while True:
 try:
 records = external_service.fetch(current_position)

 if records.empty():
 restriction_tracker.defer_remainder(timestamp.Duration(second=10))
 return

 for record in records:
 if restriction_tracker.try_claim(record.position):
 current_position = record.position
 yield record
 else:
 return

 except TimeoutError:
 restriction_tracker.defer_remainder(timestamp.Duration(seconds=60))
 return

</>

SDF Components
Advanced SDF - Watermark control

Watermark estimator

Watermark estimator
provider

● It tracks the watermark state when the processing of an element
and restriction pair is in progress.

● It extends from the WatermarkEstimator base class.

● It lets developers define how to initialize the watermark state and
create a watermark estimator.

● It extends from the WatermarkEstimatorProvider base class.

Watermark state ● It is a user-defined object. In its simplest form it could just be a
timestamp.

Controlling the watermark

● Provide no watermark estimation.

● The runner computes the output watermark as the minimum
of all upstream watermarks.

Default
behaviour

Controlling the watermark

● The WatermarkEstimatorProvider returns an initial estimation for the
watermark state that an element and restriction pair will produce.

● The WatermarkEstimator updates the estimation based on the processing
time, timestamp of output records or manual modifications done in the
DoFn.process call.

● The runner computes the output watermark by taking the minimum over:
○ All upstream watermarks.
○ The estimation reported by each element and restriction pair.

● The reported watermark must monotonically increase for each element and
restriction pair across bundle boundaries.

● When an element and restriction pair stops processing its watermark, it is
no longer considered part of the calculation.

Advanced
behaviour

Controlling the watermark
Watermark estimators

ManualWatermarkEstimator

MonotonicWatermarkEstimator

WalltimeWatermarkEstimator

It gives the possibility to provide an estimation of the
watermark state manually in the DoFn.process method.

It uses processing time as the estimated watermark state.

It take as estimation of the watermark state the timestamp of
the output record and assumes that the value is
monotonically increasing.

Now it’s time to try it all out. Let’s go!!

