

NYC 2023

Alex Y. Chan
Trustpilot

Optimizing ML Workloads
on Dataflow

BEAM SUMMIT NYC 2023#

Trustpilot

BEAM SUMMIT NYC 2023#

Apache Beam at Trustpilot

BEAM SUMMIT NYC 2023#

Apache Beam at Trustpilot

● NLP
○ B2B and B2C analytics
○ Sentiment analysis
○ Topic modelling

BEAM SUMMIT NYC 2023#

Apache Beam at Trustpilot

● NLP
○ B2B and B2C analytics
○ Sentiment analysis
○ Topic modelling

● Platform integrity
○ Scam/spam
○ Fake reviews
○ Bad actors

BEAM SUMMIT NYC 2023#

Apache Beam at Trustpilot

● NLP
○ B2B and B2C analytics
○ Sentiment analysis
○ Topic modelling

● Platform integrity
○ Scam/spam
○ Fake reviews
○ Bad actors

● Feature Store
○ Online store (real time stream)
○ Offline store (batch)
○ User events, review activity

BEAM SUMMIT NYC 2023#

Apache Beam at Trustpilot

● NLP
○ B2B and B2C analytics
○ Sentiment analysis
○ Topic modelling

● Platform integrity
○ Scam/spam
○ Fake reviews
○ Bad actors

● Feature Store
○ Online store (real time stream)
○ Offline store (batch)
○ User events, review activity

● All on GCP Dataflow

BEAM SUMMIT NYC 2023#

● Dataflow Prime cost savings
○ Saving 40% on our large batch ML jobs

Agenda

BEAM SUMMIT NYC 2023#

● Dataflow Prime cost savings
○ Saving 40% on our large batch ML jobs

● Multi-model GPU sharing
○ Multiple embedding vectors for LLM applications

Agenda

BEAM SUMMIT NYC 2023#

● Dataflow Prime cost savings
○ Saving 40% on our large batch ML jobs

● Multi-model GPU sharing
○ Multiple embedding vectors for LLM applications

● JAX for lin. alg. speedup
○ Speeding up linear algebra operations in Beam

Agenda

BEAM SUMMIT NYC 2023#

● Dataflow Prime cost savings
○ Saving 40% on our large batch ML jobs

● Multi-model GPU sharing
○ Multiple embedding vectors for LLM applications

● JAX for lin. alg. speedup
○ Speeding up linear algebra operations in Beam

● RunInference for ML inference
○ Improving codebase maintainability

Agenda

BEAM SUMMIT NYC 2023#

Dataflow Prime

- Enable pipeline step-level
resource specification ● Prepare data in BigQuery for

processing
● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, high RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM

BEAM SUMMIT NYC 2023#

Dataflow Prime Example pipeline

- Enable pipeline step-level
resource specification

- Example ML pipeline
● Prepare data in BigQuery

for processing

● Text preprocessing
● Feature engineering

● ML model inference

● Launch load of data into
BigQuery

BEAM SUMMIT NYC 2023#

Dataflow Prime Example pipeline

- Enable pipeline step-level
resource specification

- Example ML pipeline
- Imbalanced resource

requirements
- Each step has differing

resource requirements

● Prepare data in BigQuery
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM

BEAM SUMMIT NYC 2023#

Dataflow Prime Example pipeline

- Enable pipeline step-level
resource specification

- Example ML pipeline
- Imbalanced resource

requirements
- Each step has differing

resource requirements

● Prepare data in BigQuery
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM

BEAM SUMMIT NYC 2023#

Dataflow Prime Uniform worker pool

- Enable pipeline step-level
resource specification

- Example ML pipeline
- Imbalanced resource

requirements
- Each step has differing

resource requirements
- Forced to take the "argmax"

over each resource type

● Prepare data in BigQuery
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM
 custom-4-32000-ext 1x T4 GPU.

BEAM SUMMIT NYC 2023#

Dataflow Prime With resource hint specification

- Enable pipeline step-level
resource specification

- Example ML pipeline
- Imbalanced resource

requirements
- Each step has differing

resource requirements
- Forced to take the "argmax"

over each resource type

● Prepare data in BigQuery
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM

 8GB RAM, 1xT4 GPU

 4GB RAM .

32GB RAM .

 4GB RAM .

BEAM SUMMIT NYC 2023#

Code With resource hint specification

● Prepare data in BigQuery
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM
 4GB RAM .

32GB RAM .

 4GB RAM .

with beam.Pipeline(options=PipelineOptions(
 dataflow_service_options=["enable_prime"]
)) as pipeline:
 _ = (
 pipeline

| inputPTransform().with_resource_hints(.
 min_ram="4GB", accelerator=None .
)

| preprocPTransform().with_resource_hints(.
 min_ram="32GB", accelerator=None .
)

| inferencePTransform().with_resource_hints(
 min_ram="8GB", .
 accelerator="type:nvidia-tesla-t4; .
 count:1;install-nvidia-driver" .
)
| inferencePTransform().with_resource_hints(
 min_ram="4GB", accelerator=None .
)

)

 8GB RAM, 1xT4 GPU

BEAM SUMMIT NYC 2023#

Code With resource hint specification

● Prepare data in BigQuery
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into
BigQuery

● Low CPU, low RAM
 4GB RAM .

32GB RAM .

 4GB RAM .

with beam.Pipeline(options=PipelineOptions(
 dataflow_service_options=["enable_prime"]
)) as pipeline:
 _ = (
 pipeline

| inputPTransform().with_resource_hints(.
 min_ram="4GB", accelerator=None .
)

| preprocPTransform().with_resource_hints(.
 min_ram="32GB", accelerator=None .
)

| inferencePTransform().with_resource_hints(
 min_ram="8GB", .
 accelerator="type:nvidia-tesla-t4; .
 count:1;install-nvidia-driver" .
)
| inferencePTransform().with_resource_hints(
 min_ram="4GB", accelerator=None .
)

)

 8GB RAM, 1xT4 GPU

BEAM SUMMIT NYC 2023#

Dataflow Prime cost savings

BEAM SUMMIT NYC 2023#

Review

- I/O can take a lot of time
- In particular the WriteToBigQuery PTransform is I/O-bound
- Can take a long time:

- TriggerLoadJobs DoFn
- WriteRecordsToFile DoFn

- Don't need special resources for these steps
- With Prime, just specify to run with lower resources

- GPU steps are dependent on CPU-bound steps
- Separating these steps enables more efficient use of GPU
- Ensures higher batch size can be realized == higher throughput
- Breaking the dependency ensures higher GPU utililization

BEAM SUMMIT NYC 2023#

Review

- Benchmark your pipelines to measure expected savings
- It may not be the case that you will end up better off

- Break fusion to discretize worker pools
- Dataflow will sometimes fuse together steps you want to keep separate
- Insert a Reshuffle PTransform

BEAM SUMMIT NYC 2023#

- LLM-based products and
applications

- chat, agents
- Retrieval augmentation

- add relevant context to
prompt to reduce
hallucinations

- Embed data for similarity
lookup

- vector store

Multi-model GPU sharing

BEAM SUMMIT NYC 2023#

- LLM-based products and
applications

- chat, agents
- Retrieval augmentation

- add relevant context to
prompt to reduce
hallucinations

- Embed data for similarity
lookup

- vector store
- Multiple ways to embed

data
- semantic
- fraud detection
- recommendations

Multi-model GPU sharing

BEAM SUMMIT NYC 2023#

Example pipeline

- Currently: Difficult to share
GPU

- Forthcoming: Load multiple
models onto GPU

- Sink to vector store
- Multi-embedding index

BEAM SUMMIT NYC 2023#

Speeding up linalg operations

- Linear algebra operations
- Matrix multiplication
- PCA
- Distance metrics
- Broadcasted vector operations
- Even neural networks

BEAM SUMMIT NYC 2023#

Numpy example

import numpy as np

def _euclidean_dist_np (X,Y):
squared_diffs = np.power(X[:,None] - Y, 2)
summed = np.sum(squared_diffs, axis=-1)

return np.sqrt(summed)

BEAM SUMMIT NYC 2023#

JAX example

from jax import numpy as jnp

def _euclidean_dist_jax(X,Y):
squared_diffs = jnp.power(X[:,None] - Y, 2)
summed = jnp.sum(squared_diffs, axis=-1)

return jnp.sqrt(summed)

JIT compile
euclidean_dist_jax = jit(_euclidean_dist)

drop-in library

compile to fuse operations together

BEAM SUMMIT NYC 2023#

Set up JAX in Beam Code

class RBFKernel(DoFn):
 def __init__(self):
 self.rbf_jax = jit(self.rbf_)

 @staticmethod
 def _rbf(X, Y, gamma):
 def distance(X, Y):
 return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

① Define a pure function
- @staticmethod
- Linear algebra operations

①

BEAM SUMMIT NYC 2023#

class RBFKernel(DoFn):
 def __init__(self):
 self.rbf_jit = jit(self._rbf)

 @staticmethod
 def _rbf(X, Y, gamma):
 def distance(X, Y):
 return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

Set up JAX in Beam Code

① Define a pure function
- @staticmethod
- Linear algebra operations

② JIT compile
- In __init__
- Compile once

①

②

BEAM SUMMIT NYC 2023#

① Define a pure function
- @staticmethod
- Linear algebra operations

② JIT compile
- In __init__
- Compile once

③ Use the compiled function

class RBFKernel(DoFn):
 def __init__(self):
 self.rbf_jit = jit(self._rbf)

 @staticmethod
 def _rbf(X, Y, gamma):
 def distance(X, Y):
 return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

 def process(self, elem):
 ...
 yield key, self.rbf_jit(X, Y, gamma)

Set up JAX in Beam Code

①

②

③

BEAM SUMMIT NYC 2023#

① Define a pure function
- @staticmethod
- Linear algebra operations

② JIT compile
- In __init__
- Compile once

③ Use the compiled function
- PCA + distance metric faster by

~10x compared to sklearn
implementation (CPU)

class RBFKernel(DoFn):
 def __init__(self):
 self.rbf_jit = jit(self._rbf)

 @staticmethod
 def _rbf(X, Y, gamma):
 def distance(X, Y):
 return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

 def process(self, elem):
 ...
 yield key, self.rbf_jit(X, Y, gamma)

Set up JAX in Beam Code

①

②

③

BEAM SUMMIT NYC 2023#

Adopting RunInference

- RunInference
- PTransform in the Python SDK for running ML inference

BEAM SUMMIT NYC 2023#

Custom inference (previous) RunInference

- Create weak references to
model object

- Set shared handle on model
init. func.

- Manual device/CUDA
management

- Dealing with different APIs for
each ML library

- Choose a ModelHandler and
provide model URI

- Model object sharing is
handled inside RunInference

- Device set as part of
ModelHandler args (PyTorch)

- Pick among many supported
ModelHandlers

BEAM SUMMIT NYC 2023#

"Benchmarking" codebase improvements

GitHub: boyter/scc
GitHub: boyter/scc—Complexity

 Wikipedia: Cyclomatic complexity

(Composite PTransform
with custom inference)

https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

BEAM SUMMIT NYC 2023#

"Benchmarking" codebase improvements

(Composite
PTransform with
RunInference)

GitHub: boyter/scc
GitHub: boyter/scc—Complexity

Wikipedia: Cyclomatic complexity

https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

BEAM SUMMIT NYC 2023#

● Use case 1: Large batch pipelines with imbalanced resources
○ Dataflow Prime cost saving 40%

● Use case 2: Running pipelines with multiple embedding models
○ Forthcoming on Dataflow

● Use case 3: Speeding up linear algebra operations in Beam
○

● Use case 4: Improve codebase maintainability
○ Replace custom inference implementations with RunInference

Recap

NYC 2023

QUESTIONS?

BEAM SUMMIT NYC 2023#

Resources

- https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime
- https://beam.apache.org/documentation/runtime/resource-hints/

- Qdrant—Storing multiple vectors per object in Qdrant

- https://github.com/google/jax
- https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html

- https://beam.apache.org/documentation/transforms/python/elementwise/runinferen
ce/

- GitHub: boyter/scc
- GitHub: boyter/scc—Complexity
- Wikipedia: Cyclomatic complexity

https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime
https://beam.apache.org/documentation/runtime/resource-hints/
https://blog.qdrant.tech/storing-multiple-vectors-per-object-in-qdrant-c1da8b1ad727
https://github.com/google/jax
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
https://beam.apache.org/documentation/transforms/python/elementwise/runinference/
https://beam.apache.org/documentation/transforms/python/elementwise/runinference/
https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

