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Apache Beam at Trustpilot

● NLP
○ B2B and B2C analytics
○ Sentiment analysis
○ Topic modelling

● Platform integrity 
○ Scam/spam
○ Fake reviews
○ Bad actors

● Feature Store
○ Online store (real time stream)
○ Offline store (batch)
○ User events, review activity

● All on GCP Dataflow
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● Dataflow Prime cost savings
○ Saving 40% on our large batch ML jobs

● Multi-model GPU sharing
○ Multiple embedding vectors for LLM applications

● JAX for lin. alg. speedup
○ Speeding up linear algebra operations in Beam

● RunInference for ML inference
○ Improving codebase maintainability

Agenda
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Dataflow Prime Uniform worker pool

- Enable pipeline step-level 
resource specification

- Example ML pipeline
- Imbalanced resource 

requirements
- Each step has differing 

resource requirements
- Forced to take the "argmax" 

over each resource type

● Prepare data in BigQuery 
for processing

● Low CPU, low RAM

● Text preprocessing
● Feature engineering
● High CPU, high RAM

● ML model inference
● Mid CPU, mid RAM, GPU

● Launch load of data into 
BigQuery

● Low CPU, low RAM
 custom-4-32000-ext 1x T4 GPU.
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Code With resource hint specification

● Prepare data in BigQuery 
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BigQuery
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with beam.Pipeline(options=PipelineOptions(
    dataflow_service_options=["enable_prime"]
)) as pipeline:
  _ = (
     pipeline

| inputPTransform().with_resource_hints(   .
   min_ram="4GB", accelerator=None        .
)

| preprocPTransform().with_resource_hints( .
   min_ram="32GB", accelerator=None       .
)

| inferencePTransform().with_resource_hints(
   min_ram="8GB",                         .
   accelerator="type:nvidia-tesla-t4;     .
   count:1;install-nvidia-driver"         .
)
| inferencePTransform().with_resource_hints(
   min_ram="4GB", accelerator=None        .
)

  )

 8GB RAM, 1xT4 GPU 
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Review

- I/O can take a lot of time 
- In particular the WriteToBigQuery PTransform is I/O-bound
- Can take a long time:

- TriggerLoadJobs DoFn
- WriteRecordsToFile DoFn

- Don't need special resources for these steps
- With Prime, just specify to run with lower resources 

- GPU steps are dependent on CPU-bound steps
- Separating these steps enables more efficient use of GPU
- Ensures higher batch size can be realized == higher throughput
- Breaking the dependency ensures higher GPU utililization
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Review

- Benchmark your pipelines to measure expected savings
- It may not be the case that you will end up better off

- Break fusion to discretize worker pools
- Dataflow will sometimes fuse together steps you want to keep separate
- Insert a Reshuffle PTransform
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- LLM-based products and 
applications

- chat, agents
- Retrieval augmentation

- add relevant context to 
prompt to reduce 
hallucinations

- Embed data for similarity 
lookup

- vector store
- Multiple ways to embed 

data
- semantic
- fraud detection
- recommendations

Multi-model GPU sharing
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Example pipeline

- Currently: Difficult to share 
GPU

- Forthcoming: Load multiple 
models onto GPU

- Sink to vector store
- Multi-embedding index
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Speeding up linalg operations

- Linear algebra operations
- Matrix multiplication
- PCA
- Distance metrics
- Broadcasted vector operations
- Even neural networks
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Numpy example

import numpy as np

def _euclidean_dist_np (X,Y):
squared_diffs =  np.power(X[:,None] - Y, 2) 
summed  =  np.sum(squared_diffs, axis=-1)

return  np.sqrt(summed)
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JAX example

from jax import numpy as jnp

def _euclidean_dist_jax(X,Y):
squared_diffs = jnp.power(X[:,None] - Y, 2) 
summed  = jnp.sum(squared_diffs, axis=-1)

return jnp.sqrt(summed)

# JIT compile
euclidean_dist_jax = jit(_euclidean_dist)

drop-in library 

compile to fuse operations together
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Set up JAX in Beam Code

class RBFKernel(DoFn):
    def __init__(self):
        self.rbf_jax = jit(self.rbf_)

    @staticmethod
    def _rbf(X, Y, gamma):
        def distance(X, Y):
            return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y, 
2), axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)

① Define a pure function
- @staticmethod
- Linear algebra operations

①
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①
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① Define a pure function
- @staticmethod
- Linear algebra operations

② JIT compile 
- In __init__
- Compile once

③ Use the compiled function
- PCA + distance metric faster by 

~10x compared to sklearn 
implementation (CPU)

class RBFKernel(DoFn):
    def __init__(self):
        self.rbf_jit = jit(self._rbf)

    @staticmethod
    def _rbf(X, Y, gamma):
        def distance(X, Y):
            return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y, 
2), axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)

    def process(self, elem):
        ...
        yield key, self.rbf_jit(X, Y, gamma)

Set up JAX in Beam Code

①

②

③
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Adopting RunInference

- RunInference
- PTransform in the Python SDK for running ML inference
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Custom inference (previous) RunInference

- Create weak references to 
model object

- Set shared handle on model 
init. func.

- Manual device/CUDA 
management

- Dealing with different APIs for 
each ML library

- Choose a ModelHandler and 
provide model URI

- Model object sharing is 
handled inside RunInference

- Device set as part of 
ModelHandler args (PyTorch)

- Pick among many supported 
ModelHandlers
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"Benchmarking" codebase improvements

GitHub: boyter/scc 
GitHub: boyter/scc—Complexity 

 Wikipedia: Cyclomatic complexity 

(Composite PTransform 
with custom inference)

https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity
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"Benchmarking" codebase improvements

(Composite 
PTransform with 
RunInference)

GitHub: boyter/scc 
GitHub: boyter/scc—Complexity 

Wikipedia: Cyclomatic complexity 

https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity
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● Use case 1: Large batch pipelines with imbalanced resources
○ Dataflow Prime cost saving 40%

● Use case 2: Running pipelines with multiple embedding models
○ Forthcoming on Dataflow

● Use case 3: Speeding up linear algebra operations in Beam
○

● Use case 4: Improve codebase maintainability
○ Replace custom inference implementations with RunInference

Recap
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Resources

- https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime 
- https://beam.apache.org/documentation/runtime/resource-hints/

- Qdrant—Storing multiple vectors per object in Qdrant

- https://github.com/google/jax 
- https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html 

- https://beam.apache.org/documentation/transforms/python/elementwise/runinferen
ce/ 

- GitHub: boyter/scc 
- GitHub: boyter/scc—Complexity 
- Wikipedia: Cyclomatic complexity 

https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime
https://beam.apache.org/documentation/runtime/resource-hints/
https://blog.qdrant.tech/storing-multiple-vectors-per-object-in-qdrant-c1da8b1ad727
https://github.com/google/jax
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
https://beam.apache.org/documentation/transforms/python/elementwise/runinference/
https://beam.apache.org/documentation/transforms/python/elementwise/runinference/
https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

