

Optimizing ML Workloads
on Dataflow

Alex Y. Chan
Trustpilot

Trustpilot

=

GREEY

Y\
EDATTRL e
= TSI

'y ': V‘
aa'il\\

BEAM SUMMIT NYC 2023

Apache Beam at Trustpilot o

o

¥
Y

.
-~ 2
’ §k T !
7

N Y *-@**
.r‘ '9

Apoche Beam at Trustpllot o

‘.‘ NLP

” o B2B and B2C onolytlcsf / ”
Sm° Sentiment analysis®
o Topic modelling, g

— W1 \
Q‘:}M\\M\ A t“
i ﬁ‘
= ‘ | u")%y
‘ | 4& /g

' m@ ‘N \ ‘ ' CcL Apﬂﬁ

Apache Beam at Trustpllot o

e Plotform integrity, \§
lo Scam/spamjys ‘

o Fake revuewsm\\\\\&\\ y

o Bad actors’

Apache Beam at Trustpllot

vy i e P

i A lﬁ‘t ﬂ
= ‘ | u")é%
‘ 4‘;' /@

o Online store (real time stream) |
o Offline store (batch)ii
User events, review activity

CLAPHAM

Apache Beam at Trustpilot o

~

e Plotform integrityfi\

BN O Scom/spom

o Fake reviews “\W\MW w
3

- Mo Bad actorsis \% ﬁ.&&& \} NGk
. 7 1) (‘7€

e Feature Stor '

- o Online store (real time stream)
- 8o Offline store (batch)
o User events, review activity

t\ ~ N, N e =~ e~
All on GCP Dataflowy. S
il < e .

e Dataflow Prime cost savings
o Saving 40% on our large batch ML jobs

e Dataflow Prime cost savings
o Saving 40% on our large batch ML jobs

e Multi-model GPU sharing

o Multiple embedding vectors for LLM applications

e Dataflow Prime cost savings
o Saving 40% on our large batch ML jobs

e Multi-model GPU sharing
o Multiple embedding vectors for LLM applications

e JAX for lin. alg. speedup

o Speeding up linear algebra operations in Beam

e Dataflow Prime cost savings
o Saving 40% on our large batch ML jobs

e Multi-model GPU sharing
o Multiple embedding vectors for LLM applications

e JAXfor lin. alg. speedup

o Speeding up linear algebra operations in Beam

e RunInference for ML inference

o Improving codebase maintainability

Dataflow Prime

- Enable pipeline step-level
resource specification

Dataflow Prime

- Enable pipeline step-level
resource specification

- Example ML pipeline

Example pipeline

Input /0 L
——— Prepare data in BigQuery

_ for processing

4 of 4 stages succeeded

@ RAM-intensive preproc. Vv Text .
Succeeded ext preprocessing

_ Feature engineering

1 of 1 stage succeeded

@ GPU-intensive inference v
Succeeded

3 of 3 stages succeeded

Output l/O Launch load of data into
Succeeded

_ BigQuery

8 of 8 stages succeeded

Dataflow Prime Example pipeline

- Enable pipeline step-level
resource specification Suconde Prepare data in BigQuery

_ for processing

- Exo m ple M L p i peli n e X 4 of 4 stages succeeded

- Imbalanced resource

@ RAM-intensive preproc. v

[Succeeded * Text preprocessing
rGQU|rementS _ Feature en%ineerini

2 = 1 of 1 stage succeeded /—// h CPLJ,
- Each step has differing .

resource requirements

@ GPU-intensive inference v

ML model inference

.
Blezossied Mid CPURmid RAM,

3 of 3 stages succeeded

Output l/O Launch load of data into
Succeeded

_ BigQuer
8 of 8 stages succeeded lOW RA

Dataflow Prime

- Enable pipeline step-level
resource specification
- Example ML pipeline

- Each step has differing

Example pipeline

Input /0 L.
——— Prepare data in BigQuery

_ for processing

4 of 4 stages succeeded

@ RAM-intensive preproc. Vv Text .
Succeeded ext preprocessing

°
- Feature engineerin
1 of 1 stage succeeded Hioh CPU’ O

1 @ GPU-intensive inference v

Succeeded ML model inference
- MiCRY, i RANM,

3 of 3 stages succeeded

Output l/O Launch load of data into
Succeeded

_ BigQuery

8 of 8 stages succeeded

Dataflow Prime Uniform worker pool

Enable pipeline step-level \
resource specification T e Prepare data in BigQuery

_ for processing
Exomple ML plpellne 4 of 4 stages succeeded
Imbalanced resource

@ RAM-intensive preproc. v .
Text preprocessing

requ irements Succeeded . Feature enﬁineerini

. . 1 of 1 stage succeeded HI h CP(J,
- Each step has differing High CPU
resource requirements

! 9 GPU-intensive inference v .
" " ° ML model inference
- Forced to take the "argmax Suceste e o T
over each resource type e

° Output /O ¥ e Launch load of data into
Succeeded

_ BigQuery

8 of 8 stages succeeded Y

Low-CRU—ow-RAM ,
custom-4-32000-ext 1x T4 GPU

Datoflow Prime With resource hint specification

- Enable pipeline step-level , \
resource specification LT sutanes Prepare dota in BigQuery
for processing

B o . 4 of 4 stages succeeded Low CPU. low RAM !
Example ML pipeline \

- Imbalanced resource
. ———r e Text preprocessing
requl rements _ Feature engineering

@ RAM-intensive preproc. v

) . . 1 of 1 stage succeeded Hioh CPU, hioh RAM !
- Each step has differing . g 32@3 RM

resource requirements
- Forced to take the "argmax’ Sucesde I G

N @ GPU-intensive inference v

_ Mid CPU, mid RAM, GPU
3 of 3 stages succeeded

over each resource type

Output l/O Launch load of data into
Succeeded

_ BigQuery i
8 of 8 stages succeeded LOW C PU’ |_OW RAM :

4GB RAM

with beam.Pipeline(options=PipelineOptions(. . . .
With resource hint specification
)) as pipeline:
_=C

pipeline

| inputPTransform()

Input /0 L
——— Prepare data in BigQuery

- for processing
4 of 4 stages succeeded LOW CPU [OW RAM

4GB RAM
@ RAM-intensive preproc. v

Succeeded Text prePrOC_eSSI ng
- Feature engineering

1 of 1 stage succeeded

@ GPU-intensive inference v

Succeeded ML model inference
- Mid CPU, mid RAM, GPU

3 of 3 stages succeeded

8GB RAM, 1xT4 GPU

Output l/O Launch load of data into
Succeeded

_ BigQuery
8 of 8 stages succeeded LOW C PU’ |_OW RAM

4GB RAM

\
I
I
1
1
1
1
1

with beam.Pipeline(options=PipelineOptions(
dataflow_service_options=["enable_prime"]
)) as pipeline:
_ =

pipeline

| inputPTransform() BIERL Aol k= sk iak -1

min_ram= .
accelerator=

min_ram= , accelerator=None

With resource hint specification

Input I/0
Succeeded

4 of 4 stages succeeded

@ RAM-intensive preproc. v
Succeeded

1 of 1 stage succeeded

@ GPU-intensive inference v
Succeeded

3 of 3 stages succeeded

Output I/0
Succeeded

8 of 8 stages succeeded

Prepare data in BigQuery

for processing
Low CPU, low RAM

4GB RAM

Text preprocessing
Feature engineering

ML model inference
Mid CPU, mid RAM, GPU

8GB RAM, 1xT4 GPU

Launch load of data into
BigQuery
Low CPU, low RAM

\
I
I
1
1
1
1
1

4GB RAM

Dataflow Prime cost savings

Dataflow Prime cost as % of
default Dataflow cost for batch NLP job

-
@
o
Q
2
o

S

o
T

Q

=
=

s

iS)
N

S

=S

1D 10.0 125
million rows

Review

/O can take a lot of time
In particular the WriteToBigQuery PTransformis I/O-bound
Can take a long time:
- TriggerLoadJobs DoFn
- WriteRecordsToFile DoFn
Don't need special resources for these steps
With Prime, just specify to run with lower resources

GPU steps are dependent on CPU-bound steps
- Separating these steps enables more efficient use of GPU
- Ensures higher batch size can be realized == higher throughput
- Breaking the dependency ensures higher GPU utililization

Review

- Benchmark your pipelines to measure expected savings
- It may not be the case that you will end up better off

- Break fusion to discretize worker pools

- Dataflow will sometimes fuse together steps you want to keep separate
- Insert a Reshuffle PTransform

LLM-based products and

applications
- chat, agents

Retrieval augmentation
- add relevant context to

prompt to reduce
hallucinations
Embed data for similarity

lookup

- vector store

Multi-model GPU sharing

What do users say about our documentation?

% Clear and precise documentation: Users have
mentioned that the documentation provided by the
business is clear and precise, making it easy to
understand and follow .

% Plenty of examples: The documentation includes
plenty of examples that help users in setting up and
integrating the services 2.

% Some users desire more tutorials: Although the
documentation is appreciated, some users have
expressed the need for more tutorials on how to
perform certain tasks (11,

What specific topics or areas do our users
want more tutorials on?

How can we improve our documentation to
make it even more userfriendly and
comprehensive for our customers?

Multi-model GPU sharing

LLM-based products and

applications .
_ C h Ot, OgentS What do users say about our documentation?

Retrieval augmentation
o O d d re levo nt CO ntext to % Clear and precise documentation: Users have

mentioned that the documentation provided by the

p r- O m pt t O r-e d u C e business is clear and precise, making it easy to

understand and follow .
h O I.lU C I n Ot I O n S % Plenty of examples: The documentation includes
plenty of examples that help users in setting up and
Embed data for similarit e e e
y % Some users desire more tutorials: Although the
documentation is appreciated, some users have
lo O k U p expressed the need for more tutorials on how to
perform certain tasks (11,
- vector store
p y How can we improve our documentation to
d OtO make it even more userfriendly and
comprehensive for our customers?
o sema nt| C What specific topics or areas do our users

want more tutorials on?
- fraud detection
- recommendations

Currently: Difficult to share
GPU

Forthcoming: Load multiple
models onto GPU

Sink to vector store
- Multi-embedding index

Example pipeline

) ReadFromBigQuery v
Succeeded

8 min 17 sec
4 of 4 stages succeeded

(] Text embed] User embed

Succeeded Succeeded

1Th1min5sec 1 hr 18 min 29 sec
3 of 3 stages succeeded 3 of 3 stages succeeded

V] Vector Store
Succeeded

2 min 20 sec
2 of 2 stages succeeded

Speeding up linalg operations

- Linear algebra operations
Matrix multiplication
PCA
Distance metrics
Broadcasted vector operations
Even neural networks

Numpy example

import numpy as np

def _euclidean_dist_np (X,Y):
squared_diffs = np.power(X[:,None] - Y, 2)
summed = np.sum(squared_diffs, axis=-1)

return np.sqrt(summed)

JAX example

drop-in library

from jax import numpy as jnp

def _euclidean_dist_jax(X,Y):
squared_diffs = jnp.power(X[:,None] - VY, 2)
summed = jnp.sum(squared_diffs, axis=-1)

return jnp.sqrt(summed)

JIT compile
euclidean_dist_jax = jit(_euclidean_dist)

compile to fuse operations togethe

Set up JAX in Beam

@ Deﬁne Q pure fUﬂCtiOﬂ class RBFKernel(DoFn):

- da@staticmethod
- Linear algebra operations

@staticmethod
def _rbf(X, Y, gamma): CD
def distance(X, Y):
return jnp.sqrt(

jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

d = distance(X, Y)
return jnp.exp(-gamma * d**2)

Set up JAX in Beam

@ Define a pure function

- da@staticmethod
- Linear algebra operations

@ JIT compile

- In__init__
- Compile once

class RBFKernel(DoFn):
def __init__(self):

(O
self.rbf_jit = jit(self._rbf) @

@staticmethod
def _rbf(X, Y, gamma): (:)
def distance(X, Y):
return jnp.sqrt(
jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

d = distance(X, Y)
return jnp.exp(-gamma * d**2)

Set up JAX in Beam

@ Define a pure function class RBFKernel(DoFn):
- astaticmethod def __init__(self):
- Linear algebra operations self.rbf_jit = jit(self._rbf) (@
@staticmethod

. def _rbf(X, Y, gamma): @
@ JIT compile def distance(X, Y):
- In__init__ return jnp.sqrt(
_ Compile once jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

. . d = distance(X, Y)
@ Use the compiled function Foturn, jnp. exp(=ganma, * d*¥2)

def process(self, elem): @

yield key, self.rbf_jit(X, Y, gamma)

Set up JAX in Beam

@ Define a pure function class RBFKernel(DoFn):
- astaticmethod def __init__(self):
- Linear algebra operations self.rbf_jit = jit(self._rbf) (@
@staticmethod

. def _rbf(X, Y, gamma): @
@ JIT compile def distance(X, Y):
- In__init__ return jnp.sqrt(
_ Compile once jnp.sum(jnp.power(X[:, None] - Y,
2), axis=-1))

. . d = distance(X, Y)
@ Use the compiled function Foturn, jnp. exp(=ganma, * d*¥2)

- PCA + distance metric faster by »
~10x compared to sklearn def process(self, elem): ©)

|mplementot|on (CPU) yield key, self.rbf_jit(X, Y, gamma)

Adopting RunInference

- RunInference

- PTransform in the Python SDK for running ML inference

Custom inference (previous)

Create weak references to
model object

Set shared handle on model
init. func.

Manual device/CUDA
management

Dealing with different APIs for
each ML library

RunInference

Choose o ModelHandler and
provide model URI

Model object sharing is
handled inside RunInference

Device set as part of
ModelHandler args (PyTorch)

Pick among many supported
MlodelHandlers

"‘Benchmarking’ codebase improvements
~/go/bin/scc src/ml/sentiment.py _

Language Files Lines Blanks Comments

Python 1 212 32 68

Total 1 212 32 68

Estimated Cost to Develop (organic) $2,711
Estimated Schedule Effort (organic) 1.46 months
Estimated People Required (organic) 0.17

Processed 7007 bytes, 0.007 megabytes (SI)

GitHub: bovyter/scc
GitHub: bovyter/scc—Complexity
Wikipedia: Cyclomatic complexity

https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

"Benchmarking' codebase improvements

~/go/bin/scc ./v2/éxperimenta1/transforms/mi/sentiment.py

Language Files Lines Blanks Comments

Python 1 122 16 52

Total 1 122 16 52

Estimated Cost to Develop (organic) $1,260
Estimated Schedule Effort (organic) 1.09 months
Estimated People Required (organic) 0.10

Processed 3972 bytes, 0.004 megabytes (SI)

GitHub: bovyter/scc
GitHub: bovyter/scc—Complexity
Wikipedia: Cyclomatic complexity

https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

Use case 1. Large batch pipelines with imbalanced resources
o Dataflow Prime cost saving 40%

Use case 2: Running pipelines with multiple embedding models
o Forthcoming on Dataoflow

Use case 3: Speeding up linear algebra operations in Beam

O

Use case 4: Improve codebase maintainability
o Replace custom inference implementations with RunInference

3=AM

NYC 2023

Resources

https://cloud.qoogle.com/dataflow/docs/quides/enable-dataflow-prime
https://beam.apache.org/documentation/runtime/resource-hints/

Qdrant—Storing multiple vectors per object in Qdrant

httpos://qithub.com/qooaqgle/jax
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jox.ntml

https://beam.apache.org/documentation/transforms/python/elementwise/runinferen
ce/

GitHub: boyter/scc

GitHub: boyter/scc—Complexity

Wikipedia: Cyclomatic complexity

https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime
https://beam.apache.org/documentation/runtime/resource-hints/
https://blog.qdrant.tech/storing-multiple-vectors-per-object-in-qdrant-c1da8b1ad727
https://github.com/google/jax
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
https://beam.apache.org/documentation/transforms/python/elementwise/runinference/
https://beam.apache.org/documentation/transforms/python/elementwise/runinference/
https://github.com/boyter/scc
https://github.com/boyter/scc/discussions/235#discussioncomment-407308
https://en.wikipedia.org/wiki/Cyclomatic_complexity

