BEAM SUMMIT

Optimizing ML Workloads on Dataflow

Alex Y. Chan Trustpilot

Q Trustpilot

Dataflow Prime cost savings

• Saving 40% on our large batch ML jobs

- Dataflow Prime cost savings
 - Saving 40% on our large batch ML jobs

Multi-model GPU sharing

• Multiple embedding vectors for LLM applications

0

- Dataflow Prime cost savings
 - Saving 40% on our large batch ML jobs
- Multi-model GPU sharing
 - Multiple embedding vectors for LLM applications

JAX for lin. alg. speedup

• Speeding up linear algebra operations in Beam

0

- Dataflow Prime cost savings
 - Saving 40% on our large batch ML jobs
- Multi-model GPU sharing
 - Multiple embedding vectors for LLM applications
- JAX for lin. alg. speedup
 - Speeding up linear algebra operations in Beam

RunInference for ML inference

Improving codebase maintainability

Enable pipeline step-level resource specification

Example pipeline

- Enable pipeline step-level resource specification
- Example ML pipeline

✓ Input I/O ✓ Succeeded – 4 of 4 stages succeeded	 Prepare data in BigQuery for processing
RAM-intensive preproc. ✓ Succeeded	Text preprocessingFeature engineering
GPU-intensive inference ↓ Succeeded 3 of 3 stages succeeded	ML model inference
Output I/O Succeeded 8 of 8 stages succeeded	 Launch load of data into BigQuery

Example pipeline

- Enable pipeline step-level resource specification
- Example ML pipeline

Imbalanced resource requirements

Each step has differing resource requirements

Example pipeline

- Enable pipeline step-level resource specification
- Example ML pipeline

- Imbalanced resource

requirements

Each step has differing resource requirements

Uniform worker pool

- Enable pipeline step-level resource specification
- Example ML pipeline
- Imbalanced resource requirements
 - Each step has differing resource requirements

 Forced to take the "argmax" over each resource type

With resource hint specification

Enable pipeline step-level resource specification

- Example ML pipeline
- Imbalanced resource requirements
 - Each step has differing resource requirements
- Forced to take the "argmax" over each resource type

<pre>with beam.Pipeline(options=PipelineOptions(</pre>	With resource hint specification				
)) as pipeline:					
_ = (pipeline					
(inputPTransform()	 Input I/0 Succeeded 4 of 4 stages succeeded Low CPU, low RAM 4 GB RAM 				
(preprocPTransform()	 RAM-intensive preproc. Succeeded 1 of 1 stage succeeded Text preprocessing Feature engineering High CPU, high RAM 32GB RAM 				
(inferencePTransform()	 GPU-intensive inference Succeeded GPU-intensive inference ML model inference Mid CPU, mid RAM, GPU 3 of 3 stages succeeded 8GB RAM, 1xT4 GPU 				
inferencePTransform()	Output I/O Succeeded 8 of 8 stages succeeded Construction C				
)					

Dataflow Prime cost savings

Review

- I/O can take a lot of time
 - In particular the WriteToBigQuery PTransform is I/O-bound
 - Can take a long time:
 - TriggerLoadJobs DoFn
 - WriteRecordsToFile DoFn
 - Don't need special resources for these steps
 - With *Prime*, just specify to run with lower resources
- GPU steps are dependent on CPU-bound steps
 - Separating these steps enables more efficient use of GPU
 - Ensures higher batch size can be realized == higher throughput
 - Breaking the dependency ensures higher GPU utililization

Review

- Benchmark your pipelines to measure expected savings
 - It may not be the case that you will end up better off

- Break fusion to discretize worker pools
 - Dataflow will sometimes fuse together steps you want to keep separate
 - Insert a Reshuffle PTransform

Multi-model GPU sharing

- LLM-based products and applications
 - chat, agents
- Retrieval augmentation
 - add relevant context to prompt to reduce hallucinations
- Embed data for similarity lookup
 - vector store

What do users say about our documentation?

★ Clear and precise documentation: Users have mentioned that the documentation provided by the business is clear and precise, making it easy to understand and follow ^[1].

 \bigstar Plenty of examples: The documentation includes plenty of examples that help users in setting up and integrating the services ^[2].

★ Some users desire more tutorials: Although the documentation is appreciated, some users have expressed the need for more tutorials on how to perform certain tasks [1].

How can we improve our documentation to make it even more userfriendly and comprehensive for our customers?

What specific topics or areas do our users want more tutorials on?

ŧ

Multi-model GPU sharing

- LLM-based products and applications
 - chat, agents
- Retrieval augmentation
 - add relevant context to prompt to reduce hallucinations
- Embed data for similarity lookup
 - vector store
- Multiple ways to embed data
 - semantic
 - fraud detection
 - recommendations

What do users say about our documentation?

★ Clear and precise documentation: Users have mentioned that the documentation provided by the business is clear and precise, making it easy to understand and follow ^[1].

 \bigstar Plenty of examples: The documentation includes plenty of examples that help users in setting up and integrating the services ^[2].

★ Some users desire more tutorials: Although the documentation is appreciated, some users have expressed the need for more tutorials on how to perform certain tasks [1].

What specific topics or areas do our users want more tutorials on?

How can we improve our documentation to make it even more userfriendly and comprehensive for our customers?

Example pipeline

- Currently: Difficult to share GPU
- Forthcoming: Load multiple models onto GPU
- Sink to vector store
 - Multi-embedding index

Speeding up linalg operations

- Linear algebra operations
 - Matrix multiplication
 - PCA
 - Distance metrics
 - Broadcasted vector operations
 - Even neural networks

Numpy example

import numpy as np

def _euclidean_dist_np (X,Y):
 squared_diffs = np.power(X[:,None] - Y, 2)
 summed = np.sum(squared_diffs, axis=-1)

return np.sqrt(summed)

JAX example

from jax import numpy as jnp drop-in library

def _euclidean_dist_jax(X,Y):
 squared_diffs = jnp.power(X[:,None] - Y, 2)
 summed = jnp.sum(squared_diffs, axis=-1)

return jnp.sqrt(summed)

1 Define a pure function

- astaticmethod
- Linear algebra operations

Code

```
class RBFKernel(DoFn):
```

@staticmethod def _rbf(X, Y, gamma): def distance(X, Y): return jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2), axis=-1))

```
d = distance(X, Y)
return jnp.exp(-gamma * d**2)
```

(1) Define a pure function

- astaticmethod
- Linear algebra operations _
- 2 JIT compile
 - ln __**init**__
 - Compile once

Code

```
class RBFKernel(DoFn):
   def __init__(self):
       self.rbf_jit = jit(self._rbf) (2)
```



```
@staticmethod
                           (1)
def _rbf(X, Y, gamma):
    def distance(X, Y):
        return jnp.sqrt(
            jnp.sum(jnp.power(X[:, None] - Y,
       2), axis=-1))
```

```
d = distance(X, Y)
return jnp.exp(-gamma * d**2)
```

1 Define a pure function

- astaticmethod
- Linear algebra operations
- ② JIT compile
 - In __init__
 - Compile once

③ Use the compiled function

Code

```
class RBFKernel(DoFn):
    def __init__(self):
        self.rbf_jit = jit(self._rbf) 2
```

```
@staticmethod
def _rbf(X, Y, gamma):
    def distance(X, Y):
        return jnp.sqrt(
            jnp.sum(jnp.power(X[:, None] - Y,
            2), axis=-1))
```

```
d = distance(X, Y)
return jnp.exp(-gamma * d**2)
```

def process(self, elem):

. . .

yield key, self.rbf_jit(X, Y, gamma)

1 Define a pure function

- astaticmethod
- Linear algebra operations
- ② JIT compile
 - In __init__
 - Compile once
- ③ Use the compiled function
 - PCA + distance metric faster by ~10x compared to sklearn implementation (CPU)

Code

```
class RBFKernel(DoFn):
    def __init__(self):
        self.rbf_jit = jit(self._rbf) ②
```

```
@staticmethod
def _rbf(X, Y, gamma):
    def distance(X, Y):
        return jnp.sqrt(
            jnp.sum(jnp.power(X[:, None] - Y,
            2), axis=-1))
```

yield key, self.rbf_jit(X, Y, gamma)

Adopting **RunInference**

- RunInference

- **PTransform** in the Python SDK for running ML inference

Custom inference (previous)

- Create weak references to model object
- Set shared handle on model init. func.
- Manual device/**CUDA** management
- Dealing with different APIs for each ML library

RunInference

- Choose a ModelHandler and provide model URI
- Model object sharing is handled inside **RunInference**
- Device set as part of
 ModelHandler args (PyTorch)
 - Pick among many supported **ModelHandler**s

"Benchmarking" codebase improvements

~/go/bin/scc src/ml/sentiment.py

(Composite **PTransform** with custom inference)

Language	Files	Lines	Blanks	Comments	Code Co	mplexity		
Python	1	212	32	68	112	14		
Total	1	212	32	68	112	14		
Estimated Cost to Develop (organic) \$2,711 Estimated Schedule Effort (organic) 1.46 months Estimated People Required (organic) 0.17								
Processed 7007 bytes, 0.007 megabytes (SI)								

<u>GitHub: boyter/scc</u> <u>GitHub: boyter/scc—Complexity</u> <u>Wikipedia: Cyclomatic complexity</u>

BEAM SUMMIT NYC 2023

"Benchmarking" codebase improvements

<pre>~/go/bin/scc ./v2/experimental/transforms/ml/sentiment.py (Composite PTronsform with</pre>										
Language	File	s Line	s Blanks	Comments	unIn fero Code	Complexity				
Python		1 12	2 16	52	54	2				
Total		1 12	2 16	52	54	2				
Estimated Cost to Develop (organic) \$1,260 Estimated Schedule Effort (organic) 1.09 months Estimated People Required (organic) 0.10										
Processed 3972 bytes, 0.004 megabytes (SI)										
				<u>GitH</u> <u>Wikipe</u>	<u>Gitl</u> ub: boyter/s edia: Cyclom	<u>Hub: boyter/scc</u> scc—Complexity natic complexity				

- Use case 1: Large batch pipelines with imbalanced resources
 Dataflow Prime cost saving 40%
- Use case 2: Running pipelines with multiple embedding models
 Forthcoming on Dataflow
- Use case 4: Improve codebase maintainability
 Replace custom inference implementations with **RunInference**

QUESTIONS?

Resources

- https://cloud.google.com/dataflow/docs/guides/enable-dataflow-prime
- <u>https://beam.apache.org/documentation/runtime/resource-hints/</u>
- <u>Qdrant-Storing multiple vectors per object in Qdrant</u>
- <u>https://github.com/google/jax</u>
- https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
- <u>https://beam.apache.org/documentation/transforms/python/elementwise/runinferen</u> <u>ce/</u>
- <u>GitHub: boyter/scc</u>
- <u>GitHub: boyter/scc—Complexity</u>
- Wikipedia: Cyclomatic complexity