Beaom at Talena:
the long road together

Alexey Romanenko
Qlik/Talend

Open Source Engineer
Beam PMC

Qiik@ talend

2006

2006
2007

2015

2016

2018

2019

Founded in 2006, Talend was the first company to market open-source data integration
software;

Released in October 2006, Talend Open Studio is the company's first product;

July 2007, Talend launched its first commercial version, Talend Data Integration;

March 2015, the company launched Talend Integration Cloud to enable developers to

simplify and accelerate cloud and hybrid integration projects;

January 2016, Talend joins Clouderaq, Data Artisans, Google, Cask and Paypal on the
Apache Foundation's Googles Cloud Dataflow project - Apache Beam;

May 2018, Talend launched Talend Data Streams for AWS - a new free offering for
self-service integration;

April 2019, the company launched Talend Pipeline Designer (formerly Talend Data Streams),
a next generation data integration design environment included in Talend Cloud.

May 2023, Qlik acquires Talend

Talend and Open Source

Talend has a rich Open Source culture from the very beginning ;
Talend is a long-time partner of the ASF ;

Open Source team at Talend is ASF contributor for many projects:

o notably in the Apache CXF, Camel, Karaf, ActiveMQ, Beam, Spark, Flink, Avro and other projects;
Help to mentor numerous projects through the ASF Incubator;

o Beamis a good example
The company is also a member of other open source foundations:

o Java Community Process (JCP), Eclipse Foundation, OW226 and the Open Source School.

Beam at Talend

BEAM SUMMIT NYC 2023

Talend Open Studio is a

free open source ETL
tool for Data
Integration and Big
Data;

Eclipse based

developer tool and job
designer,;

Drag&drop components

and connect them to
createand run ETL/ELT

jobs;

No need to write a
single line of code.

Talend Open Studio / Data Integration

(@ Tolend Data Integration (6.1.1.20151214_1327) | Local Project (Connection: Local)

File Edt View Window Help
i) I Leaen R sk WO Exchange

& "Repository
LOCAL: Local Project
v {5 DWH _MovieRatings

@ DWH_Load Dim_StateRatings 0.1

T Contacts_to_Salesforce 0.1
T Joblet Designs
[ig Contexts
[©] Code
EJ sal Templates
v [Metadata
v I} Db Connections

> §) File delimited
¢ Outline Code Viewer
» tAggregateRow_1 (Avg_Rating)
> tMap_1 (Join)
> tMysqlinput_| (‘fact ratings")
> tMysqlinput 2 ("dim_users”)
> tMysqlOutput 1 ("dim_stateratings”)

Y
“fact_ratings*

) Avg Rating(tAggregateRow_1)

\

¥ Y Job{DWH Losd Dim Ste. [i@ Conteds(OWH Losd Dim_. M) Component

1> Run (Job DWH_Load_Dim_.

[retcuses © @

Modern flexible integration tool

to process data in easy and
powerful manner;

Provides a graphical interactive

Web Ul to create complex
pipelines;

Live preview of data changes;

Schema-based data collections;

Batch & Streaming;

Portable & Scalable;

Uses Beam under the hood!

Talend Pipeline Designer (TPD)

xey Romanenko v
[AROMANENKO] Run profile
[AROMANENKO] Remote Engine Gen2 B atl «~ Q0

Aggregate By Country o
Processors Ageregate

Configuration Info
Groupby @
nationality

Field path

nationality

Data preview - Aggregate By Country Display | Both v || View | Grid v Runson | [AROMANENKO] Remote Engine Gen2

Input

player_id*
FR Postal Codez (string)

158023
20801

190871
203376

200389
-

100 records Output 28 records Operations (&)

name* nationality* osition* nationality* -
Y P Y _nationality Count total
First Name (string) Country (string) Country Code 502 (si Country (string)

r Field path*
Lionel Messi Argentina STICF|RW Uruguay

[nationality

Cristiano Ronaldo Portugal STILW Italy

Operation*
Neymar Jr Brazil CAMILW Morocco

=

Virgil van Dijk Netherlands [o:] Slovakia

Jan Oblak Slovenia GK Poland

o 1
~
~
~

*s._ Live preview .-’ Processor configuration
(before/after)

Using Beam at Talend

Started to use Beam in 2016 as ASF

Incubator project for Talend DataStreams,
then Talend Pipeline Designer ;

Talend Open Source team helped Beam to
become a top-level ASF project ;

Beam is used in the Data Processing
Platform for several Talend products:
o Pipeline Designer : Batch & Streaming
pipelines
Data Inventory : Sampling sources
Data Preparation : Running data
pre-processing jobs

o R
mmmmmmmmmmmmm [AROMANENKO)] Local connection - Semple: Head

Talend Trust Score™ QD 4711

@ 2.86/5 w0

#al «2 00

Aggregate By Country

Ageregate

Connectors and components:

A pipeline is essentially a DAG of
components:

o) IO components: a.k.a.
Connectors.

o) Intermediate components: a.k.a.
Processors.

To be used in a pipeling,

connector or component have to
be either:
O Beam-based: implement Beam

API (e.g, PTransform for
processors)

TCK-based: internal components
framework

Engine Runtime: pipeline

Components Connectors
PD + DP + DQ mainly TDI
Some PD

Processor 2

« Beam API: PD £ DQ components

* TCK API: the remaining () In-;:: source/sink
Testing

Engine Runtime: compiler

A pipeline is represented as RuntimeFlow

(RTF) object (TSON of components) Beam Compiler (Translator):

Beom Compiler [{Beam Job ® The first compiler that has been
implemented;

It tronslates an RTF to Beam pipeline;

sQL Compile_r

Then Beaom pipeline is executed using

Native Sampling either:
Compﬂer

O SparkRunner (Livy/FullRun job)

O FlinkRunner (Interactive mode)

RuntimeFlow

Native DP O DirectRunner (Preview mode)
interactive

COMPiler

Full run Beam/Spark architecture

le:
An architecture of full run job in Pipeline
Designer

Apache Livy

Beam
Compiler

Apache Spark

Talend Pipeline Designer

\l/ Worker

Beam Job spark-submit

— > — > Worker
Y

Spark
Runner

Worker

Java SDK

Artifacts

Use cases:
Python processor

Python processor

Alexey Romanenko v

Python C

TPD processor € o=

Python 2 component
Python 2

The Python processor R

Map

executes user Python 5 o 2 +e oo > .]
Here you can define your custom MAP trg

COde tO perform ‘ l__— # The input record is available as the "i
FIFA-21 Python 2 component Output dataset # The output record is available as the "

H # The record columns are available as def]

Cu Stom processl ng On # The return statement is added automati
so there's no need to add it here

user records. R

1. When choosing Map, output is a dicti

output['coll’'] = input['coll’'] + 1234
output['col2'] “The " + input['col2']

. . # output['col3'] CustomTransformation(
Originally, Python
#
p rOCGSSO r U Sed ey # 2. When choosing FlatMap, output is a
Data preview - Python 2 component Display | Both v View | Grid v Runson = [AROMANENKO] Remote Engine Gen2
J ! t h O n 2.7 O S Pyt h O n : :23:38::[7:(‘:;‘??; = 'newOne’
output.append(recordOne)

H Input 100 records Output 100 records
engine to process ’ " utput = tnput]
player_id* name* nationality* position* player_id* name* nationality* position* output[‘name'] = input['name'].upper()

P)(thOﬂZ code Y R [e Eaisb b N Tl e A s

158023 Lionel Messi Argentina ST|CF| © 158023 LIONEL MESSI Argentina ST|CF|

20801 Cristiano Ronaldo Portugal STILW 20801 CRISTIANO RONALDO Portugal STILW

190871 Neymar Jr Brazil CAM|Lw 190871 NEYMAR JR Brazil CAM|LW m

Problem: Potential solutions:

Python 2.7 reached EQOL on e Beam portability fromework:
12/31/2019

o Run Python 3 code as a Beam

cross-language transform with Beam
Portable Runner

Pipeline Designer Python
processor used Jython 2.7 as
Python engine See my talk ‘Using Cross-Language

pipeline to run Python 3 code with Java

Jython didn't support Python3, no SDK" at Beam Summit 2020

plans to support it in the future e Pvthon-as-Service:

No easy way to install 3-party Use a custom Python server and
Python libraries dedicated PTransform to execute
Python code

Thanks to Ryan Scraba (@ryanskraba)
who worked on this

Cross-language Beam/Spark

Advantages:

* Full support of Beam model and its

Talend Pipeline Designer
N features out-of-box;
=> h Tested and maintained by Beam

@ spark-submit community;,

Artifacts Pp— Good performance for large data
Workes > Isnxﬁ:rauss sets.

Worker Py?h]on3
Java/Python Pipeline ol Drawbacks:
(pipeline time)

Java q
— || — W°"‘";“ ’!soxumss ®* Several times worse performance for

Overhead
small datao;

Required a complicated
re-architecture of the TPD Runtime

10 records 100 records 1K records 10K records 100K 500K PAa rt
records records

01:12
00:00

mPortable Runner (Process) = Spark Runner

High maintenance costs

Own Python server to execute python

l l Advantages:
Py'rhonTmns%rm PythonServer
: : ®* Simpler and configurable for our use case;

®* No extra overhead/dependencies;

Start server (per JVM)

* Better performance for small dato.

Started signal
leeoononnn. Stortedsignal /

REGIEF by than IEC Drawbacks:
_Python UDF ID ,

e Implementation/maintenance of the Python

Execute Python UDF on element server;

Output List Only useful for specific use cases (no

advanced Beam features - e.g. metrics,
triggers, state, timers, etc);

Stop server,

o servey it | Requires a robust implementation of the
teared down by JVM

Python server because of potential issues
on startup/shutdown and resource leaks;

Not tested/supported by a large community.

Use Cases:
Small Data Performance

Problem: Potential solutions:

e One pipeline (DAG/schema) > Use different runners for

three sizes of input dataset different use cases (current
Small dataset (50-100 rows) for solution);
preview and interactive use;
Average dataset (~10K rows) for Use native Java code

data sampling; compilation (PoC);

Large dataset (+10M rows) for full

run pipeline. Create Fast (In-Memory) runner
Fast (instant) results are critical for small/average datasets (PoC,
for interactive mode WIP).

Beom is supposed to run with
large datasets and on distributed
environments

Native compilation

e Run a Beam pipeline (MinimalWordCount) locally as GraalVM native image

o GraalVMis a high-performance JDK distribution designed to accelerate the execution of
applications written in Java and other JVM languages along with support for a number of
other popular languages.

e Use DirectRunner to simplify experiments
o Other runners (SparkRunner & FlinkRunner) are in our ToDo list

e Our expectations:
o Much lower memory usage for native images,
o Faster startup times.

Native compilation

W Corretto 11.0....
W Corretto 8.322..

Benchmark results (MinimalWordCount): it wmon Runtime syetem

¥ GraalVM CE 22

® Memory usage improved ~ 29% (median) i . - " e
compared to the best performing JVM o el
Performance also improved ~ 27%

(mediaon) compared to the best
performing JVM.

Total time elapsed (ms)

Next steps:

® Run with more performance-oriented
runners, like Spark/Flink or new Fast Loca
runner

More details at Moritz Mack’s blog post:
https://qithub.com/mosche/blogposts/blob/main/beamnative/README.md

https://github.com/mosche/blogposts/blob/main/beamnative/README.md

Fast Local Runner

Develop a local in-memory Beam runner from scratch;

Replace DirectRunner, FlinkRunner and SparkRunner used in local
mode;

Limited Beam model implementation (at least, for PoC):

o Batch only
o No state / timer support

o Global Windows only - , : :
eactor is a fourth-generation reactive
Use Reactive Streams (Project Reactor) ety CleEee e i KR eiio SiEeis

specification, for building non-blocking
o One JVM, keep all data in memory applications on the JVYM

o Map Java stream operations to Beam transforms () PROJECT REACTOR
PoC implemented by Moritz Mack, early stage:

o WIP: https://qithub.com/mosche/beam/tree/reactor

https://github.com/mosche/beam/tree/reactor

Intermediate results

Median Elapsed Time (sec) Median User Time (sec) Median System Time (sec)

Used Beam TPC-DS benchmarks,
10 runs for every configuration;

System Time (sec)

Elapsed Time (sec)
User Time (sec)

No DirectRunner, it constantly

fails with OOM errors for the
TPC-DS dataset of 1GB: i s e

2 4 6
Heap (GB)

§

—_—

g

4
Heap (GB)

Significant performance

Context Switch
Median Voluntary Context Switches y Contex Median Memory overhead (GB)

improvements with
ReactorRunner;

Next steps:

Involuntary Context Switches

Memory overhead (GB)

O Add Windowing support

Run ValidateRunner tests

Series
. flink [local1-g1-cops-noBiasedLocking]
Contribute back to Beam B ik foced-g1-cope noBlsssaLockinct
W reactor [sdf_async-g1-cops-noBiasedLocking]
W spark [local1-g1-cops-noBiasedLocking]
W spark [local4-g1-cops-noBiasedLocking]
sparkDS [local1-g1-cops-noBiasedLocking]
B sparkDS [locald-g1-cops-noBiasedLocking]

O -
O Add Streaming support .
©)

Talend contributions to
Beam

Our Beam code contributions

Java |O connectors

o AWS, Hadoop, Kafka, Elasticsearch,
Hbase, Jdbc, Avro, Parquet, ...

Nexmark benchmark
iImprovements

TPC-DS benchmark integration

Spark Runner

o RDD runner improvements
o Dataset runner from scratch

Security fixes

Other contributions

Releases testing

PRs reviews

Documentation updates
Project mailing lists discussions
Beom users support

Blogging and talks at

conferences

o Beam Summit, ApacheCon,
OpenSource Summit, etc

Some taokeaways

It's very important to contribute back to the OS project that is a
key component of your product;

Knowledge sharing saves time and money;

Be part of project community;

Sometimes it's challenging to find a balance between your specific
and common users requests;

Don't wait until someone do what you need - do it yourself!

Beam contributors at Talend

Many-many-many thanks to Talend all-time Beam contributors:

JB Onofré (Qjbonofre)

Ismaél Mejia (Qiemejia)

Etienne Chauchot (@echauchot)
Daniel Kulp (@dkulp)

Ryan Skraba (@ryanskraba)

Colm O'Heigeartaigh (@coheigea)
Moritz Mack (@mosche)

Romain Manni-Bucau (@rmannibucau)
Alexey Romanenko (@aromanenko-dev)

Thank youl!

Twitter : @AlexRomDev
Github : @aromanenko-dev

3=AM

NYC 2023

