
NYC 2023

Alexey Romanenko
Qlik/Talend

Open Source Engineer
Beam PMC

Beam at Talend:
the long road together

82

BEAM SUMMIT NYC 2023

A bit of history…

● Founded in 2006, Talend was the first company to market open-source data integration
software;

● Released in October 2006, Talend Open Studio is the company's first product;

● July 2007, Talend launched its first commercial version, Talend Data Integration;

● March 2015, the company launched Talend Integration Cloud to enable developers to
simplify and accelerate cloud and hybrid integration projects;

● January 2016, Talend joins Cloudera, Data Artisans, Google, Cask and Paypal on the
Apache Foundation's Google's Cloud Dataflow project - Apache Beam;

● May 2018, Talend launched Talend Data Streams for AWS - a new free offering for
self-service integration;

● April 2019, the company launched Talend Pipeline Designer (formerly Talend Data Streams),
a next generation data integration design environment included in Talend Cloud.

● May 2023, Qlik acquires Talend

2006

2006

2007

2015

2016

2018

2019

2023

BEAM SUMMIT NYC 2023

Talend and Open Source

● Talend has a rich Open Source culture from the very beginning ;

● Talend is a long-time partner of the ASF ;

● Open Source team at Talend is ASF contributor for many projects:

○ notably in the Apache CXF, Camel, Karaf, ActiveMQ, Beam, Spark, Flink, Avro and other projects;

● Help to mentor numerous projects through the ASF Incubator ;

○ Beam is a good example

● The company is also a member of other open source foundations:

○ Java Community Process (JCP), Eclipse Foundation, OW226 and the Open Source School.

NYC 2023

Beam at Talend

BEAM SUMMIT NYC 2023

The long and winding road…

(c) https://parisandbeyond2012.com/

BEAM SUMMIT NYC 2023

Talend Open Studio / Data Integration

● Talend Open Studio is a
free open source ETL
tool for Data
Integration and Big
Data;

● Eclipse based
developer tool and job
designer;

● Drag&drop components
and connect them to
create and run ETL/ELT
jobs;

● No need to write a
single line of code.

BEAM SUMMIT NYC 2023

Talend Pipeline Designer (TPD)

● Modern flexible integration tool
to process data in easy and
powerful manner;

● Provides a graphical interactive
Web UI to create complex
pipelines;

● Live preview of data changes;

● Schema-based data collections;

● Batch & Streaming;

● Portable & Scalable;

● Uses Beam under the hood!

Processors OutputInput

Live preview
(before/after)

Processor configuration

BEAM SUMMIT NYC 2023

Using Beam at Talend

• Started to use Beam in 2016 as ASF
Incubator project for Talend DataStreams,
then Talend Pipeline Designer ;

• Talend Open Source team helped Beam to
become a top-level ASF project ;

• Beam is used in the Data Processing
Platform for several Talend products :

○ Pipeline Designer : Batch & Streaming
pipelines

○ Data Inventory : Sampling sources
○ Data Preparation : Running data

pre-processing jobs

BEAM SUMMIT NYC 2023

Engine Runtime: pipeline

Connectors and components:

● A pipeline is essentially a DAG of
components:

○ IO components: a.k.a.
Connectors.

○ Intermediate components: a.k.a.
Processors.

● To be used in a pipeline,
connector or component have to
be either:

○ Beam-based: implement Beam
API (e.g, PTransform for
processors)

○ TCK-based: internal components
framework

BEAM SUMMIT NYC 2023

Engine Runtime: compiler

Beam Compiler (Translator):

● The first compiler that has been
implemented;

● It translates an RTF to Beam pipeline;

● Then Beam pipeline is executed using
either:

○ SparkRunner (Livy/FullRun job)
○ FlinkRunner (Interactive mode)
○ DirectRunner (Preview mode)

A pipeline is represented as RuntimeFlow
(RTF) object (JSON of components)

BEAM SUMMIT NYC 2023

Full run Beam/Spark architecture

Example:
An architecture of full run job in Pipeline
Designer

NYC 2023

Use cases:
Python processor

93

BEAM SUMMIT NYC 2023

Python processor

● TPD processor

● The Python processor
executes user Python
code to perform
custom processing on
user records.

● Originally, Python
processor used
Jython 2.7 as Python
engine to process
Python2 code

BEAM SUMMIT NYC 2023#

Problem: Potential solutions:

● Python 2.7 reached EOL on
12/31/2019

● Pipeline Designer Python
processor used Jython 2.7 as
Python engine

● Jython didn’t support Python3, no
plans to support it in the future

● No easy way to install 3rd-party
Python libraries

● Beam portability framework:

○ Run Python 3 code as a Beam
cross-language transform with Beam
Portable Runner

○ See my talk “Using Cross-Language
pipeline to run Python 3 code with Java
SDK" at Beam Summit 2020

● Python-as-Service:

○ Use a custom Python server and
dedicated PTransform to execute
Python code

○ Thanks to Ryan Scraba (@ryanskraba)
who worked on this

BEAM SUMMIT NYC 2023

Cross-language Beam/Spark

Advantages:

• Full support of Beam model and its
features out-of-box;

• Tested and maintained by Beam
community;

• Good performance for large data
sets.

Drawbacks:

• Several times worse performance for
small data;

• Required a complicated
re-architecture of the TPD Runtime
part

• High maintenance costs

BEAM SUMMIT NYC 2023

Own Python server to execute python

Advantages:
• Simpler and configurable for our use case;

• No extra overhead/dependencies;

• Better performance for small data.

Drawbacks:
• Implementation/maintenance of the Python

server;
• Only useful for specific use cases (no

advanced Beam features - e.g. metrics,
triggers, state, timers, etc);

• Requires a robust implementation of the
Python server because of potential issues
on startup/shutdown and resource leaks;

• Not tested/supported by a large community.

NYC 2023

Use Cases:
Small Data Performance

98

BEAM SUMMIT NYC 2023#

Problem: Potential solutions:

● One pipeline (DAG/schema) –>
three sizes of input dataset

○ Small dataset (50-100 rows) for
preview and interactive use;

○ Average dataset (~10K rows) for
data sampling;

○ Large dataset (+10M rows) for full
run pipeline.

● Fast (instant) results are critical
for interactive mode

● Beam is supposed to run with
large datasets and on distributed
environments

● Use different runners for
different use cases (current
solution);

● Use native Java code
compilation (PoC);

● Create Fast (In-Memory) runner
for small/average datasets (PoC,
WIP).

BEAM SUMMIT NYC 2023

Native compilation

● Run a Beam pipeline (MinimalWordCount) locally as GraalVM native image
○ GraalVM is a high-performance JDK distribution designed to accelerate the execution of

applications written in Java and other JVM languages along with support for a number of
other popular languages.

● Use DirectRunner to simplify experiments
○ Other runners (SparkRunner & FlinkRunner) are in our ToDo list

● Our expectations:
○ Much lower memory usage for native images,
○ Faster startup times.

BEAM SUMMIT NYC 2023

Native compilation

Benchmark results (MinimalWordCount):
● Memory usage improved ~ 29% (median)

compared to the best performing JVM
● Performance also improved ~ 27%

(median) compared to the best
performing JVM.

Next steps:
● Run with more performance-oriented

runners, like Spark/Flink or new Fast Local
runner

More details at Moritz Mack’s blog post:
https://github.com/mosche/blogposts/blob/main/beamnative/README.md

https://github.com/mosche/blogposts/blob/main/beamnative/README.md

BEAM SUMMIT NYC 2023

Fast Local Runner

● Develop a local in-memory Beam runner from scratch;
● Replace DirectRunner, FlinkRunner and SparkRunner used in local

mode;
● Limited Beam model implementation (at least, for PoC):

○ Batch only
○ No state / timer support
○ Global Windows only

● Use Reactive Streams (Project Reactor)
○ One JVM, keep all data in memory
○ Map Java stream operations to Beam transforms

● PoC implemented by Moritz Mack, early stage:
○ WIP: https://github.com/mosche/beam/tree/reactor

Reactor is a fourth-generation reactive
library, based on the Reactive Streams
specification, for building non-blocking
applications on the JVM

https://github.com/mosche/beam/tree/reactor

BEAM SUMMIT NYC 2023

Intermediate results

● Used Beam TPC-DS benchmarks,
10 runs for every configuration;

● No DirectRunner, it constantly
fails with OOM errors for the
TPC-DS dataset of 1GB;

● Significant performance
improvements with
ReactorRunner;

● Next steps:

○ Add Windowing support

○ Run ValidateRunner tests

○ Add Streaming support

○ Contribute back to Beam

NYC 2023

Talend contributions to
Beam

104

BEAM SUMMIT NYC 2023#

Our Beam code contributions Other contributions

● Java IO connectors
○ AWS, Hadoop, Kafka, Elasticsearch,

Hbase, Jdbc, Avro, Parquet, …

● Nexmark benchmark
improvements

● TPC-DS benchmark integration

● Spark Runner
○ RDD runner improvements
○ Dataset runner from scratch

● Security fixes

● Releases testing

● PRs reviews

● Documentation updates

● Project mailing lists discussions

● Beam users support

● Blogging and talks at
conferences

○ Beam Summit, ApacheCon,
OpenSource Summit, etc

BEAM SUMMIT NYC 2023

Some takeaways

● It’s very important to contribute back to the OS project that is a
key component of your product;

● Knowledge sharing saves time and money;
● Be part of project community;
● Sometimes it’s challenging to find a balance between your specific

and common users requests;
● Don’t wait until someone do what you need - do it yourself!

BEAM SUMMIT NYC 2023

Beam contributors at Talend

Many-many-many thanks to Talend all-time Beam contributors:

● JB Onofré (@jbonofre)
● Ismaël Mejía (@iemejia)
● Etienne Chauchot (@echauchot)
● Daniel Kulp (@dkulp)
● Ryan Skraba (@ryanskraba)
● Colm O'Heigeartaigh (@coheigea)
● Moritz Mack (@mosche)
● Romain Manni-Bucau (@rmannibucau)
● Alexey Romanenko (@aromanenko-dev)

NYC 2023

QUESTIONS?
Twitter : @AlexRomDev

Github : @aromanenko-dev

Thank you!

