Machine Learning Platform Tooling with Apache Beam on Kubernetes
About The Presenter

Charles Adetiloye is a Cofounder and Lead Machine Learning Platforms Engineer at MavenCode. He has well over 15 years of experience building large-scale distributed applications. He has extensive experience working and consulting with several companies implementing production grade ML platforms.

twitter.com/cadetiloye
MavenCode is an Artificial Intelligence Solutions Company with HQ in Dallas, Texas with a remote delivery workforce across multiple time zones. We do training, product development and consulting services with specializations in:

- Provisioning Scalable AI and ML Infrastructure - OnPrem and In the Cloud
- Development & Production Operationalization of ML platforms - OnPrem and In the Cloud
- Streaming Data Analytics and Edge IoT Model Deployment for Federated Learning
- Building out Data lake, Feature Store, and ML Model Management platform

twitter.com/mavencode
Agenda for Today

- Introduction - Overview of Apache Beam and Kubernetes
- Leveraging Apache Beam and Kubernetes for ML
- Deploying Apache Beam ML workloads on Kubernetes
- Lessons Learnt and Recommendations
- Questions & Answers
Introduction - Overview of Apache Beam and Kubernetes
The main objective of any machine learning project is to build models that can learn from data and make predictions or decisions.
Machine Learning Development Iterative Steps of...

- Data Ingestion
- Data Preparation
- Feature Engineering
- Model Training
- Model Evaluation
- Deployment

- Data Engineering responsible for bringing the FeatureStore & Datalake
- Data Scientist responsible for maintaining the Model
- API Team Consuming the Deployed Model

Data Scientist responsible for maintaining the Model
Data Engineering responsible for bringing the FeatureStore & Datalake
API Team Consuming the Deployed Model
Model Deployment
Apache Beam Makes it Easy to Compose your Pipeline

Data Ingestion -> Data Preparation -> Feature Engineering -> Model Training -> Model Evaluation

Data Engineer responsible for bringing the FeatureStore & Datalake
Data Scientist responsible for maintaining the Model
API Team Consuming the Deployed Model

Beam IO libraries e.g. TextIO, KafkaIO, BigQueryIO etc
Transforms: ParDo, GroupByKey, Combine etc
Integration with Scikit-learn, TFX, Pytorch etc

Model Deployment
Apache Beam Touches Everything in a ML Pipeline

- **SidInputs/SideOutputs:** Allowing for more complex multi-step computation
- **Fault Tolerance:** Handle Failures with better resilience
- **Transforms:** Rich set of Transforms - Mapping, Batching, Joining
- **Integration with IO:** Kafka, BigQuery, Parquet
- **Unified Model:** Streaming + Batch Workloads
- **RunInference:** Pytorch, ScikitLearn, Tensorflow etc
- **Scalability:** Designed to Scale & Leverage Runner Distributed Capabilities
- **Portability:** Multi-Language Capabilities (Python, Java, Go, Typescript) and Multi-Runner Capabilities
The Apache Beam Runner (Portability Framework)

- Data Ingestion
- Data Preparation
- Feature Engineering
- Model Training
- Model Evaluation

Portable Runner

- Java SDK
- Python SDK
- Golang SDK
- TypeScript SDK

Model Deployment

Runners:
- Dataflow Runner
- Flink Runner
- Spark Runner
Beam Portability Model

Client SDKs
- Java SDK
- Python SDK
- GoLang SDK
- TypeScript SDK
- [XXX] SDK

JobService
- Runner API: Pipeline Proto
- Dataflow Runner
- Flink Runner
- Spark Runner
- Other Runners

Fun API: (Runners)
- Java Execution Environment
- Python Execution Environment
- GoLang Execution Environment
Beam Portability Model

1. SDKs translates into Protobuf RunAPI model
 - It will also Upload Libraries/Dependencies to Artifact Storage location

2. Pipeline Submission To JobService API

3. Runner Translates to Underlining Execution Engine

Data Scientist, Data Engineer or ML Engineer writing Beam Code in Language of their Choice Python, Go, Java

SDKs translates into Protobuf RunAPI model
- It will also Upload Libraries/Dependencies to Artifact Storage location
Data Scientist, Data Engineer or ML Engineer writing Beam Code in Language of their Choice Python, Go, Java

```python
options = PipelineOptions([  
    "--runner=PortableRunner",  
    "--job_endpoint=localhost:8099",  
    "--artifact_endpoint=localhost:8098",  
    "--save_main_session",  
    "--environment_type=DOCKER",  
    "--environment_config=docker.io/apache/beam_python3.10_sdk:2.48.0"
])

with beam.Pipeline(options=options) as p:
...
```
Some Benefits of the Portability in Beam

Language Flexibility: Multi-Language Capabilities (Python, Java, Go, Typescript and Multi-Runner Capabilities)

Reusable Pipeline: Write Once and Reuse across different environments or projects, leading to great efficiency and consistency

Cross Language Transform: Use Transforms written in one language in another language. Leveraging ecosystem of available Transforms

Flexibility to Select Runner: Improve performance by allowing development teams to choose the execution engine that best meets their needs

Reduced Development Time: Reduce development time by allowing teams to write pipelines once & run them on any supported execution engine

Reduced Cost: Help to reduce costs by allowing development teams to choose the execution engine that best meets their needs

Easy of Testing/Debugging: Makes testing and debugging process during development more efficient
Leveraging Beam + Kubernetes for ML Workload
Deployment Portability on Kubernetes

Kubernetes Open Standards. Applications can be deployed on any Kubernetes-compatible platform such as Amazon Elastic Kubernetes Service (EKS), Google Kubernetes Engine (GKE), or Microsoft Azure Kubernetes Service (AKS).

Kubernetes has a wide range of Tools and Plugins. Tools that can be used to automate the deployment and management of Kubernetes applications, making it easier to move applications between different platforms.

Kubernetes has a large and active community. Kubernetes has a large and active community, which is constantly developing new tools and resources to make Kubernetes more portable. This community support can help organizations to get the most out of Kubernetes and to overcome any challenges that they may encounter.
Infrastructure Portability on Kubernetes

Underlying Infrastructure Provider: Cloud, OnPrem, or Local Desktop

Abstraction Layer for Container Deployment on Kubernetes

Beam Pipeline Orchestrated and Deployment on Kubernetes
Building Apache Beam Portable ML Stack on Kubernetes

1. Portability of Coding Semantics (Java, Scala, Python, Go or SQL)
2. Portability of Across Runners (Direct Runner, Flink Runner, Spark Runner, Dataflow Runner)
3. Portability of Across Compute Infrastructure - Local Dev, OnPrem or Cloud

- Beam Python SDK
- Beam Java SDK
- Beam Go SDK
- Flink Operator
- Spark Operator
- Samza

Pipeline (Runner API)
ML Development Workflow

1. Data Scientist and Engineers can iteratively quickly test out their Beam Code in Local Environment.

Minikube (Local Dev)

Beam ML Code

K8s Namespace

JobService master
dSpark
worker
dSpark
worker
dSpark
worker
dSpark

2. Some Pipeline Code can be deployed in Prod Cluster with NO change.

ONPREM or CLOUD Managed Cluster

K8s Namespace

JobService master
dSpark
worker
dSpark
worker
dSpark
worker
dSpark
worker

Minikube (Local Dev)
ML Development Workflow

1. Data Scientist and Engineers can iteratively quickly test out their Beam Code in Local Environment.

2. Some Pipeline Code can be deployed in Prod Cluster with NO change.

3. Automated Deployment in Prod with Argo CD.
Shared Apache Beam ML Dev Environment on Kubernetes

- Beam Go Job Running on Spark
- Beam Java Job Running on Flink / Spark Runner
- Complete Pipeline running On Spark Runner

Namespaces:
- DevNS0
- DevNS1
- DevNS2
- TeamNS

Roles:
- Data Scientist
- ML Engineer
- Data Engineer

Automatically Scalable K8s Node Pools
- Auto-Scalable CPU Node Pool
- Auto-Scalable GPU Node Pool

MLOps Training and Deployment Platform
Benefits of Kubernetes to the Team

1. **Improved Team Productivity:** Makes it easy to build, test, and deploy ML jobs. It provides a consistent environment for running containers, which helps reduce the risk of errors.

2. **Cost Savings:** Reduce costs by optimizing resource usage and automating tasks.

3. **Infrastructure Elasticity:** Scale applications up or down as needed, making it ideal for businesses with lots of ML workloads.

4. **Improved Reliability and Uptime:** Automatically restart failed jobs and scale workloads across multiple nodes, which can help to improve the reliability and uptime. It also includes features for self-healing and rolling updates, which can help to reduce downtime.

5. **Security:** Improve security with features, such as role-based access control (RBAC), network policies, and pod security policies.

6. **Compliance:** Kubernetes can help teams to comply with industry regulations, such as PCI DSS and HIPAA.
Deploying Apache Beam ML Workloads on Kubernetes
Implementation Setup Overview

1. **Setup Dev Environment (VSCode)**
 - Docker, Skaffold, Minikube, Makefile
 - Checkout Code Repo
 - Validate Python, Go or JDK env is set correctly
 - Setup Minikube, Spark Cluster ETC

2. **Package Containers**
 - Add your beam code
 - (Optional) Build all the containers - SDK Harness, JobService, Spark
 - Version, Tag and Push to Container Registry

3. **Deploy k8s YAML**
 - For the Spark Driver/Work
 - The JobService
 - The SDK Harness

4. **Run Job Beam Code**
 - Validate that JobService is running
 - Validate that Job is Deployed on the Spark Cluster
 - Deploy your Beam Code
Setup Your Dev Environment

1. Setup Local ENV - JDK, Python, GoPath etc
2. Install Makefile, Skaffold, Docker etc
3. Bootstrap Minikube
1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly
Configure Beam ML Portability Stack with Spark Executors

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly
Configure Beam ML Portability Stack with Spark Executors

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly

```
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: spark3-beam-jobserver
spec:
  serviceName: beamsummit-demo
  selector:
    matchLabels:
      component: spark3-beam-jobserver
  template:
    metadata:
      labels:
        component: spark3-beam-jobserver
        app.kubernetes.io/instance: beamsummit-demo
        app.kubernetes.io/name: spark
    spec:
      containers:
        - name: spark3-beam-jobserver
          image: apache/beam_spark3_job_server:2.48.0
          imagePullPolicy: Always
          ports:
            - containerPort: 8099
              name: jobservice
            - containerPort: 8098
              name: artifact
            - containerPort: 8097
              name: expansion
          volumeMounts:
            - name: beam-artifact-staging
              mountPath: /tmp/beam-artifact-staging
      volumes:
        - name: beam-artifact-staging
          persistentVolumeClaim:
            claimName: spark-beam-pvc
```
Configure Beam ML Portability Stack with Spark Executors

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly

Pipeline (Runner API) / Harness

```yaml
kind: StatefulSet
apiVersion: apps/v1
metadata:
  name: spark-primary
spec:
  serviceName: beamsummit-demo
  replicas: 1
  selector:
    matchLabels:
      component: spark-primary
  template:
    metadata:
      labels:
        component: spark-primary
        app.kubernetes.io/instance: beamsummit-demo
        app.kubernetes.io/name: spark
    spec:
      containers:
      - name: spark-primary
        image: mavendev/spark-hadoop:3.1.2
        command: ["/spark-master"]
        ports:
        - containerPort: 7077
        - containerPort: 8080
        - containerPort: 7078
        - containerPort: 7079
        resources:
          requests:
            cpu: 100m
        env:
        - name: SPARK_MODE
          value: "master"
Configure Beam ML Portability Stack with Spark Executors

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly
Configure Beam ML Portability Stack with Spark Executors

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: spark-beam-pvc
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
```
Configure Beam ML Portability Stack with Spark Executors

1. Setup Local ENV - JDK, Python, GoPath etc
2. Install Makefile, Skaffold, Docker etc
3. Bootstrap Minikube
1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly
Package and Configure your Beam ML Job

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly

```bash
dns="beamsummit-demo.spark.svc.cluster.local"
python model_training.py \
 --input gs://beam23-demo/feature_sets/ \
 --output gs://beam23-demo/model/ \
 --runner=PortableRunner \
 --job_endpoint="spark3-beam-jobserver-0.${DNS}:8099" \
 --artifact_endpoint="spark3-beam-jobserver-0.${DNS}:8098" \
 --environment_type="EXTERNAL" \
 --environment_config="localhost:50000"
```
1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly
Deploy Container Workloads on Kubernetes

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers
3. Validate that Every Container is deployed correctly
Lessons Learnt and Recommendations
1. **Pipeline Portability**: Promise of Portability across multiple environments is a great advantage but capability still varies across execution engines or runners

2. **Resource Management**: Efficiently balancing resource consumption, Scheduling Cluster Creation (Spark, Flink) before Job is submitted and tearing it down when it becomes idle

3. **Understanding Kubernetes**: Comes with its own set of complexities and Learning Curve, knowing how to manage and deploy resource, Leveraging Kubernetes Operators/CRDs for Execution Engine life cycle management

4. **Monitoring/Logging/Debugging**: Extensive Logging and Capturing for Metrics from each stage of our ML pipelines, will it easy to quickly debug and track any subsystem failures

5. **Learning Curve for the Team**: Initial ramp up time for every new team members but once they get a hang of how things are done, it becomes a lot more easier for them
Q & A?

Thanks for coming!

Connect with Us on:
Twitter: @mavencode
GitHub: @mavencode
Email: hello@mavencode