

Machine Learning Platform Tooling
with Apache Beam on Kubernetes

Charles Adetiloye
MavenCode
NYC 2023 y/@COdetiloye

About The Presenter

Charles Adetiloye is a Cofounder and Lead Machine Learning
Plotforms Engineer at MavenCode. He has well over 15 years of
experience building large-scale distributed applications. He has
extensive experience working and consulting with several companies

implementing production grade ML plotforms.

y twitter.com/cadetiloye

About MavenCode

MavenCode is an Artificial Intelligence Solutions Company with HQ in Dallas, Texas with a
remote delivery workforce across multiple time zones. We do training, product development
and consulting services with specializations in:
Provisioning Scalable Al and ML Infrastructure - OnPrem and In the Cloud
Development & Production Operationalization of ML platforms - OnPrem and In the
Cloud
Streaming Data Analytics and Edge loT Model Deployment for Federated Learning
Building out Data lake, Feature Store, and ML Model Management platform

y twitter.com/mavencode

Agenda for Today

Introduction - Overview of Apache Beam and Kubernetes
Leveraging Apache Beam and Kubernetes for ML
Deploying Apache Beaom ML workloads on Kubernetes
Lessons Learnt and Recommendations

Questions & Answers

Introduction - Overview of Apache
Beom and Kubernetes

Building Machine Learning Projects

The main objective of any machine
learning project is to build models that
can learn from data and make
poredictions or decisions

Data
Ingestion

Data Engineering
Responsible for
bringing the
FeatureStore &
Datalake

Data Scientist
responsible for
maintaining the
Model

Data

Preparation

Feature
Engineering

Training

API Team
Consuming the
Deployed Model

Model :
Evaluation |I» i

Data Scientist
responsible for
maintaining the

Data Engineering
Responsible for
bringing the

FeatureStore & wledes 3 : APl Team

Datalake Consuming the
Deployed Model

Data Data Feature Model |I
Ingestion Preparation Engineering Training Evaluation

Beam IO libraries Transforms: Integration with
e.g TextlO, ParDo, Scikit-learn, TFX,
KafkalO, GroupByKey, Pytorch etc

BigQuerylO etc Combine etc

Apache Beam Touches Everything in a ML Pipeline

Sidelnputs/SideOutputs:
Allowing for more complex Fault Tolerance: Handle

multi-step computation Failures with better
resilience

Transforms: Rich set of
Tronsforms -'Mopping, Integration with 1O: Kafka,
Batching, Joining BigQuery, Parquet

Unified Model
Streaming + Batch Runinference: Pytorch,
Workloads ScikitLearn, Tensorflow etc

Scalability: Designed to
Scale & Leverage Runner
Distributed Capabilities

a

Portability: Multi-Language Capabilities (Python, Java,
Go, Typescript) and Multi-Runner Capabilities

.

The Apache Beam Runners

Data
Ingestion

Legacy / Classic Runner Approach

Data
Preparation

Feature Model
Engineering Training

Dataflow

R

Model
Evaluation

Data
Ingestion

Data
Preparation

Python SDK

Feature

Engineering

Model
Training

Model
Evaluation

TypeScript SDK

Dataflow
Runner

Flink
Runner

s

- Runner

Spark

Model

Beam Portability Model

Java SDK

-

I

1

I

! - .

i : Java Execution
, !

1

I

I

Environment

&

Python SDK

-

Runner API: . Python Execution
Pipeline Proto B Pk (Rumsrs Environment

&

Golang SDK

TypeScript SDK . : s

Golang Execution
Environment

(.

[XXX] SDK i i Other Runners

Beam Portability Model

Data Scientist, Data
Engineer or ML Engineer
writing Beam Code in
Language of their Choice
Python, Go, Java

Pipeline Submission
To JobService API

Job Service

Runner Translates
a - SDKs translates into Protobuf RunAPI model a to Underlining

- It will also Upload Libraries/Dependencies to Artifact Storage location Execution Engine

Spark
Spaik’

Beam Portability Model

Beam Code is

Data Scientist, Data)
Engineer or ML Engineer 'cSr:methi;hrci)ﬁ?h
writing Beam Code in €)oob_enopo

Language of their Choice

Python, Go, Java Libraries and all

reloted Artifacts are
submitted at the
artifact_endpoint

Describes the Job
Server Type,
DOCKER, LOOPBACK,
or EXTERNAL

options = PipelineOptions([

" --runner=PortableRunner",
"--job_endpoint=localhost:8099",
"--artifact _endpoint=localhost:8098"

== = — The Type of SDK that
"--environment_type=DOCKER" ////’“’ will be used
"--environment_config=docker.io/apache/beam_python3.10_sdk:2.48.0" F_—/

D

with beam.Pipeline(options=options) as p:

Some Benefits of the Portability in Beom

Language Flexibility: Reusable Pipeline:

Multi-Languoge Capabilities Write Once and Reuse across
(Python, Javao, Go, Typescript different environments or
and Multi-Runner Capabilities) projects, leading to great

Cross Language Transform: Flexibility to Select Runner:

efficiency and consistency available Transforms

Use Transforms written in one Improve performance by allowing
language in another languaoge. development teams to choose the
Leveraging ecosystem of execution engine that best meets

their needs

Reduced Development Time:
Reduce development time by
allowing teams to write pipelines
once & run them on any
supported execution engine

Reduced Cost:

Help to reduce costs by allowing
development teams to choose the
execution engine that best meets
their needs

Easy of Testing/Debugging
Makes testing and debugging
process during development
more efficient

Leveraging Beam + Kubernetes for
ML Workload

Deployment Portability on Kubernetes

Kubernetes Open Standards: Applications can be deployed on any
Kubernetes-compatible platform such as Amazon Elastic Kubernetes
Service (EKS), Google Kubernetes Engine (GKE), or Microsoft Azure
Kubernetes Service (AKS)

Kubernetes has a wide range of Tools and Plugins: Tools that can be
used to automate the deployment and management of Kubernetes
applications, making it easier to move applications between different
platforms.

Kubernetes has a large and active community: Kubernetes has a
large and active community, which is constantly developing new tools
and resources to make Kubernetes more portable. This community
support can help organizations to get the most out of Kubernetes
and to overcome any challenges that they may encounter

Infrastructure Portability on Kubernetes

Data Data Feature Model Model Beam Pipeline Orchestrated
Ingestion Preparation Engineering Training Evaluation

and Deployment on
Kubernetes

Abstraction Layer for
Container Deployment on
OXOXOXOXO) Kubernetes

I ooo Underlying Infrastructure
— aWS Provider- Cloud, OnPrem or
I e N 5 Local Desktop
= I eee

Building Apache Beaom Portable ML Stack on Kubernetes

Portability of Coding Semantics
Beam Python SDK Beam Java SDK Beam Go SDK —> c Javo, Scala, Python, Go or SQL)

Pipeline (Runner API)

Flink Operator é

Spark
Operator

APACHE

Spar"l(\z Samza Portability of Across Runners

(Direct Runner, Flink Runner,

Spark Runner, Dataflow Runner)

00000 . —_ eportobility of Across Compute

Infrastructure - Local Dev, OnPrem
or Cloud

dWs

N

O O

ML Development Workflow

Data Scientist and
Engineers can
Iteratively quickly
test out their Beam
Code in Local
Environment

Minikube Beam ML Code
(Local Dev)

K8s Namespace

worker

Same Pipeline
Code can be
deployed in Prod
Cluster with NO

i,
spai’

worker worker

ONPREM or CLOUD
Managed Cluster

ML Development Workflow

Data Scientist and
Engineers can
Iteratively quickly
test out their Beam
Code in Local
Environment

Same Pipeline
Code can be

deployed in Prod
Minikube Beam ML Code Cluster with NO ONPREM or CLOUD

(Local Dev) Managed Cluster

K8s Namespace

Prod with Argo
CD

: Automated e
N Jobservice : Deployment in

i,
spai’

worker worker

worker

Spark Manifest

Auto Scalable K8s
Node Pools

Team NameSpace

Beam Python Job Running
on Spark

- spanc

Beam Go Job Running on

3 - spak

Beam Java Job Running on

Jupyter
.\/ Flink / Spark Runner

APACHE

<:Spo

Namespace - DevNS1

Namespace - DevNS2

Q
3~

Complete Pipeline running
On Spark Runner

MLOps Training and Deployment Platform

Benefits of Kubernetes to the Team

Improved Team Productivity: Makes it easy to build, test, and deploy ML jobs. It provides a
consistent environment for running containers, which helps reduce the risk of errors

Cost Savings: Reduce costs by optimizing resource usage and automating tasks

Infrastructure Elasticity: Scale applications up or down as needed, making it ideal for
businesses with lots of ML workloads

Improved Reliability and Uptime: Automatically restart failed jobs and scale workloads across
multiple nodes, which can help to improve the reliability and uptime. It also includes features
for self-healing and rolling updates, which can help to reduce downtime

Security: Improve security with features, such as role-based access control (RBAC), network
policies, and pod security policies

Compliance: Kubernetes can help teams to comply with industry regulations, such as PCI DSS
and HIPAA

Deploying Apache Beam ML
Workloads on Kubernetes

Implementation Setup Overview

@

o—go
[l

-_———-—

e e VoG] Package Containers Deploy k8s YAML Run Job Beam Code
e Docker Skaffold Minikube e Add your beam code e For the Spark Driver/Work e \Validate that JobService is

Vielerits o (Optional) Build all the o The JobService \r/“rl‘,g'”g hat Job is Deoloved
e Checkout Code Repo containers - SDK Harness, e The SDK Harness al hotgt OIE C(l) 's beploye
e Validate Python, Go or JDK env Jobservice, Spark gn t[v B US'“(?:F d

is set correctly e Version, Tag and Push to epioy your beam Loce

Setup Minikube, Spark Cluster Container Registry
ETC

1. Setup Local ENV - JDK, Python, GoPath etc
2. Install Makefile, Skaffold, Docker etc
3. Bootstrap Minikube

BEAM SUMMIT NYC 2023

https://docs.google.com/file/d/1RSbFumcdHBS16wrIHQLuI4jCnT2Ly6Jf/preview

Configure Beam ML Portability Stack with Spark

Job Endpoint API
Staging Endpoint API

Job Service

B

:
1. Skaffold build Containers .

2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers .
Persistent

3. Validate that Every Container is deployed correctly Volume Driver

Worker

ioeli Worker
Pipeline (Runner API) / Harness : W

APACHE

Spark”

Configure Beam ML Portability Stack with Spark

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers

3. Validate that Every Container is deployed correctly

Pipeline (Runner API) / Harness

APACHE

Spark”

Job Endpoint API
Staging Endpoint API

Job Service

Artifact Stager

Persistent
Volume Driver

SDK Harness Worker

Worker

Configure Beam ML Portability Stack with Spark

Job Service

Artifact Stager Runner

JobServer Deployment

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: spark3-beam-jobserver
spec:
serviceName: beamsummit-demo

1. Skaffold build Containers - -

2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers i temp;:’t"?"e" § P E-Com-gean
3. Validate that Every Container is deployed correctly me:aza:ai
abels:
component: spark3-beam-jobserver
app.kubernetes.io/instance: beamsummit-demo
app.kubernetes.io/name: spark
spec:
containers:
- name: spark3-beam-jobserver
image: apache/beam_spark3_job_server:2.48.0
imagePullPolicy: Always
ports:

- containerPort: 8099
Beurggxthon Beam Go SDK BEGS'TE)iOVQ name: jobservice
containerPort: 8098

" —— — o — — — — . name: artifact

containerPort: 8097
Pipeline (Runner API) / Harness name: expansion
. volumeMounts:

- name: beam-artifact-staging
mountPath: "/tmp/beam-artifact-staging”
command: [“/bin/bash", "-c", "./spark-job-server.sh --job-port=8099
--spark-master-url=spark://spark-primary:7077 --clean-artifacts-per-job=true"

APACHE

volumes:

- name: beam-artifact-staging
persistentVolumeClaim:
claimName: spark-beam-pvc

Configure Beam ML Portability Stack with Spark

Driver

SBEKS

Spark Driver Deployment

kind: StatefulSet
apiVersion: apps/vl
metadata:
name: spark-primary
spec:
serviceName: beamsummit-demo
1. Skaffold build Containers o replicas: 1
. selector:
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers matchLabels:
3. Validate that Every Container is deployed correctly U tempi:'::?nent' PRI
metadata:
labels:
component: spark-primary
app.kubernetes.io/instance: beamsummit-demo
app.kubernetes.io/name: spark
spec:
containers:
- name: spark-primary
image: mavendev/spark-hadoop:3.1.2
command: ["/spark-master"]

Beam Python Beam Java ; ports:
e i " i
- containerPort:

- containerPort:

peline (Runner API) / Harness : - containerport:
. resources:

requests:
cpu: 100m
APACHE env:

Spark” i - T BT

value: "master”

Spark Master

Configure Beam ML Portability Stack with Spark

Driver
ﬁ{ Spark kind: Statefulset
Spark Executor apiversion: apps/vi
metadata:
name: spark-worker
spec:
serviceName: beamsummit-demo
replicas: 3
selector:
matchLabels:
component: spark-worker
template:
metadata:
Tabels:
component : spark-worker
app. kubernetes. io/instance: beamsummit-demo
app. kubernetes. io/name: spark
spec:

N containers:
1. Skaffold build Containers .

- name: spark-worker

image: mavendev/spark-hadoop:3.1.2
. . . command: ["/spark-worker"]
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers ports:
. - containerPort: 8081
1 i H env:

3. Validate that Every Container is deployed correctly e ST aE

value: "worker"
- name: SPARK_MASTER_URL

value: "spark://spark-primary:7677"
- name: SPARK_WORKER_MEMORY

value: "3G"
- name: SPARK_WORKER_CORES

value: "1"
volumeMounts:
- name: beam-artifact-staging

mountPath: "/tmp/beam-artifact-staging”

- name: beam-python310-sdk-2480-harness

. image: mavendev/beam_python3_16_sdk: latest
imagePullPolicy: Always
Beam Python Beam Java args: ["--worker_pool"]
e Beam Go SDK SDK ports:

- containerPort: 50000
T—FT—TY=—r ey . name: rpc
volumeMounts:
.l - name: beam-artifact-staging
Pipeline (Runner API) / Harness MountPath: /tmp/bean-artifact-staging"

volumes

. - name: beam-artifact-staging
APACHE persistentVolumeClaim:
clainName: spark-bean-pvc

Configure Beam ML Portability Stack with Spark

Persistent Beam Artifact PVC
Volume

PVC Deployment

apiVersion: vl

A) kind: PersistentVolumeClaim
1. Skaffold build Containers

2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers i metadata:
3. Validate that Every Container is deployed correctly [name: spark-beam-pvc
spec:

accessModes:

- ReadWriteMany

| resources:
Beam thhon Beam Go SDK B ava q
= : requests:
Pipeline (Runner API) / Harness : storage: 1Gi

APACHE

Spark”

1. Setup Local ENV - JDK, Python, GoPath etc
2. Install Makefile, Skaffold, Docker etc
3. Bootstrap Minikube

BEAM SUMMIT NYC 2023

https://docs.google.com/file/d/1qC_eE8kjG0I2j8H6xTGquEcDPQjN_KYq/preview

1. Skaffold build Containers
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers

3. Validate that Every Container is deployed correctly

Pipeline (Runner API) / Harness

APACHE

Spark”

Job Endpoint API
Staging Endpoint API

Job Service

Artifact Stager

Persistent
Volume Driver

SDK Harness Worker

Worker

Package and Configure your Beam ML Job

JOb Servlce
SDK
o Stoger

DNS="beamsummit-demo.spark.svc.cluster.local"

python model_training.py \

1. Skaffold build Containers i --input gs://beam23-demo/feature_sets/ \
2. Make deploy Spark Driver, Worker/Harness, Jobserver Containers 1 --output gs: //beam23-demo/model/ \

3. Validate that Every Container is deployed correctly - -runner=PortableRunner \
--job_endpoint="spark3-beam-jobserver-0.${DNS}:8099" \
--artifact_endpoint="spark3-beam-jobserver-0.${DNS}:8098" \
--environment_type="EXTERNAL" \

--environment_config="1localhost:50000"

Pipeline (Runner API) / Harness

APACHE

Spark”

1. Skaffold build Containers

2. Make deploy Spark Driver, Worker/Harness,
Jobserver Containers

3. Validate that Every Container is deployed

correctly

EXPLORER

> OPEN EDITORS
v BEAM-SUMMIT
> .devcontainer
> codebase
v containers
> harness-container
> mipipeline-container
> spark-container
> manifest
> sh
= .gitignore
M Makefile
i) readme.md
! skaffold-harness-containe
! skaffold-mlpipeline-containe... U
! skaffold-sdk-container.yaml
skaffold-spark-container.yaml

! skaffold.yaml

> OUTLINE
> TIMELINE

M Makefile M X
akefile “,

M Makefile

build-beam-spark_jobserver:

kustomize build manifest/beam_spark_jobserver/base | kubectl apply -f -

.PHONY: build-spark-cluster
build-spark-cluster:
kustomize build manifest/spark/base | kubectl apply -f -

.PHONY: skaffold-mlpipeline-container
skaffold-mlpipeline~-container:

pushd "$(CwD)/sh/"; sh docker_login.sh; popd;

pushd "$(CWD)/containers/mlpipeline-container/python"; cp -

(CWD) /codebase codebase; popd;

skaffold build --platform linux/amd64 --default-rep (SKAFFOLD_DEFAULT_REPO) --filename skaffold-mlpipeline

pushd "$(CWD)/containers/mlpipeline-container/python"; rm -rf codebase; popd;

.PHONY: tear-spark-cluster
tear-spark-cluste
kustomize build manifest/spark/base | kubectl delete -f -

.PHONY: tear-beam-spark_jobserver
tear-beam-spark_jobserver:

1 DUTPUT D E TERMINAL

beam-summit git:() x [0

BEAM SUMMIT NYC 2023

https://docs.google.com/file/d/1WhYz5BLChretWphUdnCYwuqXzeIKpY4Q/preview

BEAM SUMMIT NYC 2023

https://docs.google.com/file/d/1lwjvWbbAI_84QSXN-m9lhqQv_ByrgFz5/preview

Lessons Learnt and Recommendations

Lessons Learnt / Future Improvements

Pipeline Portability: Promise of Portability across multiple environments is a great advantage but
capability still varies across execution engines or runners

Resource Management: Efficiently balancing resource consumption, Scheduling Cluster Creation
(Spark, Flink) before Job is submitted and tearing it down when it becomes idle

Understanding Kubernetes: Comes with its own set of complexities and Learning Curve, knowing how
to manage and deploy resource, Leveraging Kubernetes Operators/CRDs for Execution Engine life
cycle management

Monitoring/Logqing/Debugqing: Extensive Logging and Capturing for Metrics from each stage of
our ML pipelines, will it easy to quickly debug and track any subsystem failures

Learning Curve for the Team: Initial ramp up time for every new team members but once they get a
hang of how things are done, it becomes a lot more easier for them

Connect with Us on:
Twitter: @mavencode
GitHub: @mavencode

Email: hello@mavencode

