


NYC 2023

John Casey

How to write 
an IO for Beam





NYC 2023

Alex Kosolapov 
& Elizaveta Lomteva

Beam IO: CDAP and 
SparkReceiver IO 

Connectors Overview



Agenda

➔ Introduction

➔ Developing an IO

➔ CDAP IO Overview

➔ Streaming Source IO - SparkReceiver

➔ Testing IO

➔ Akvelon Data Analytics and ML Accelerators demo

5



6





Developing Beam IO (Java)

● Starting point: Developing a new I/O connector
● Design:

○ Define the input/output format
○ Read - Splittable DoFn (SDF), Write - ParDo
○ Determine target pipeline configuration parameters

● Develop:
○ DoFn to process an element
○ Read/Write PTransforms  

● Test IO: 
○ Unit testing, Integration, Performance testing

● Release: IO Documentation and examples

8

https://beam.apache.org/documentation/io/developing-io-overview/


                              cdap.io 

An open-source platform for data 
applications in hybrid and multi-cloud 

environments

9

  Google Cloud Data Fusion

Visual point-and-click interface enabling 
code-free deployment of ETL/ELT data 

pipelines

Ecosystem of plugins, including business 
applications connectors

https://cdap.io/


CDAP IO
Provides transforms for reading and writing data via CDAP plugins

Connects Apache Beam with a variety of business applications like Salesforce, 
Hubspot, ServiceNow and Zendesk

Uses CDAP plugin definition 

10



CDAP IO Workflow

11



SparkReceiver IO

SparkReceiverIO provides transforms to read data via Apache Spark 
Receiver

Prerequisites:

● Spark Receiver provides HasOffset interface.
● Records have a numeric field that represents record offset.

12



SparkReceiver IO Workflow

13



Beam Parallelism & IO

Input parallelism - reading from bounded and unbounded sources, i.e. 
data source parallelism

Inter-stage parallelism - splitting processing across workers, e.g. 
key-based data partitioning

Intra-stage parallelism - splitting element processing within 
transforms, e.g. Splittable DoFns, bundle processing

14



Data Source Parallelism

15

Refers to the parallelism achieved by reading 
data from multiple sources or partitions of a 
single source concurrently.

(E.g. Kafka topic partitions)
SparkReceiverIO
Each receiver builder can be associated with 
single source object and create multiple 
receivers during processing



Inter-stage parallelism
Refers to the parallelism between different 
transforms (or stages) within a Beam pipeline. 

Achieved by runner implementation

(E.g. key-based operations in Beam)

16

Achieved by supported runners – Direct 
runner and
Dataflow runner v1 and v2

SparkReceiverIO



Intra-stage: Splittable DoFn (SDF)

17

Executing an SDF follows the following steps:

1. Each element is paired with a restriction 
(e.g. filename is paired with offset range 
representing the whole file).

2. Each element and restriction pair is split (e.g. 
offset ranges are broken up into smaller 
pieces).

3. The runner redistributes the element and 
restriction pairs to several workers.

4. Element and restriction pairs are processed 
in parallel (e.g. the file is read). Within this last 
step, the element and restriction pair can 
pause its own processing and/or be split into 
further element and restriction pairs.



18

SparkReceiverIO



19



Agenda

➔ Introduction

➔ Developing an IO

➔ CDAP IO Overview

➔ Streaming Source IO - SparkReceiver

➔ Testing IO

➔ Akvelon Data Analytics and ML Accelerators demo

20



Testing IO and Release

IO Testing
○ testing guide, IO transforms testing
○ Unit, integration and performance test
○ Created RabbitMQ SparkReceiver 

on-demand source in Apache Beam that 
generates streaming data according to 
provided profile

Release
○ Beam website IO Connectors
○ Documentation & Readmes
○ Complete examples

21

https://cwiki.apache.org/confluence/display/BEAM/Contribution+Testing+Guide
https://beam.apache.org/documentation/io/testing/
http://metrics.beam.apache.org/d/bnlHKP3Wz/java-io-it-tests-dataflow?orgId=1
https://beam.apache.org/documentation/io/connectors/
https://github.com/apache/beam/tree/master/examples/java/cdap


Demo

Data and Analytics Accelerators 
https://github.com/akvelon/DnA_accelerators

22

https://github.com/akvelon/DnA_accelerators


23

https://docs.google.com/file/d/1XVGiEitFQjB3ugKezQJl5cbzv59kder0/preview


Summary

Developing Beam IOs

Machine Learning

Multilanguage pipelines

https://github.com/akvelon/DnA_accelerators

24

https://github.com/akvelon/DnA_accelerators


Questions?

25

https://www.linkedin.com/in/akosolapov
https://www.linkedin.com/in/elizaveta-lomteva 

https://github.com/akvelon/DnA_accelerators

https://akvelon.com 

https://www.linkedin.com/in/akosolapov
https://www.linkedin.com/in/elizaveta-lomteva
https://github.com/akvelon/DnA_accelerators
https://akvelon.com




NYC 2023

Lorenzo Caggioni
Google 

linkedin.com/in/lcaggio/

Meeting Security Requirements 
for Apache Beam Pipelines on 

Google Cloud



BEAM SUMMIT NYC 2023#

Agenda

Securing a Beam Pipelines on Google Cloud 

● Private resources

● Role separation and least privileges

● Data Encryption at rest



BEAM SUMMIT NYC 2023# 

1. Internal addressment of 
tenants must be private.

2. Every tenants must be 
isolated and dedicated to a 
specific system of services.

3. All data must have 
encryption at-rest with keys 
managed by ACME's 
security team.

Customer requirements

Cloud Storage Dataflow BigQuery



BEAM SUMMIT NYC 2023#  

1. Set `disable-public-ips` when deploying the pipeline
2. Enable `Private Access` on the subnet to access GoogleAPIs
3. Network: shared-VPC

Shared VPC - Subnet

Text and horizontal image

    PAGE NUMBER

1. Internal addressment of tenants must be private.

Cloud Storage Dataflow BigQuery

On-Prem
VPN/Interconnect

1

   Shared VPC 3

Private Access 2



BEAM SUMMIT NYC 2023#  

VPC Service Control perimeter

VPC Service Controls helps preventing data exfiltration and controlling access 
to Google APIs.

Isolate resources of multi-tenant Google Cloud services to mitigate data 
exfiltration risks. 

Text and horizontal image

    PAGE NUMBER

1. Mitigate Data Exfiltration

BigQuery
Cloud 

Storage Dataflow

VPN/Interconnect

InternetInternet



BEAM SUMMIT NYC 2023# 

IAM and Service Accounts

2. Tenants must be isolated

Dataflow BigQueryCloud Storage

Service Account

Job orchestrator
role/iam.serviceAccountUser
role/dataflow.admin

Dataflow Service Agent
roles/dataflow.serviceAgent
roles/compute.networkUser

Worker Service Account
roles/storage.objectAdmin
roles/dataflow.worker
roles/bigquery.dataEditor



BEAM SUMMIT NYC 2023# 

Project separation

Processing CuratedLanding

2. Tenants must be isolated

Service Account

Dataflow BigQueryCloud Storage

Service Account Service Account



BEAM SUMMIT NYC 2023#  

Data at rest are encrypted on GCP:

1. Data split in chunk and encrypted with a key: Data Encryption Key (DEK)
2. DEK encrypted with Key Encryption Key (KEK)
3. Chunk stored with encrypted DEK

Text and horizontal image

    PAGE NUMBER

3. At rest encryption

Options

Customer-managed 
encryption keys

Cloud EKM

Default Google encryption Customer-managed 
encryption keys 

Cloud KMS

Customer-managed 
encryption keys 

Cloud HSM

1 2 3



BEAM SUMMIT NYC 2023# 

Processing CuratedLanding

3. At rest encryption

Service Account

Dataflow BigQueryCloud Storage

Service Account Service Account

Security

Cloud KMS

roles/cloudkms.cryptoKeyEncrypterDecrypter



BEAM SUMMIT NYC 2023# 

1. Every tenants must be isolated and dedicated to 
a specific system of services.

2. Internal addressment of tenants must be private.

3. All data must have encryption at-rest with keys 
managed by ACEME's security team.

Recap

End to end example



NYC 2023

QUESTIONS?

Lorenzo Caggioni

Contact info
https://twitter.com/lcaggio

https://www.linkedin.com/in/lcaggio
https://github.com/lcaggio





NYC 2023

Pramod Rao 
& Prateek Sheel

Simplifying Speech-to-Text 
Processing with Apache 

Beam and Redis



Simplifying Speech-to-Text 
Processing with Apache Beam and 
Redis

Pramod Rao

Cloud Data Engineer

Google Cloud Consulting

Prateek Sheel

Data & Analytics Consultant

Google Cloud Consulting



Overview

Design Journey

Lessons Learned

01

02

03



Overview
01



Speech-to-text

Pub/Sub Dataflow Vertex AI Kafka

Recommendation 
Engine

Offer

Users Support
Agent

Business Process



So, what’s the problem?

Events Transcript

Metadata

Second  Agent Joins First Agent Drops Second  Agent DropsFirst Agent Joins

Wait Time

  
Warm Transfer

  
Overlap

  
Conversation

  

1 2 1 2

User Joins

Multiple Call-Transfer Scenarios

A  B  C  D B B A C C●DUPLICATES
●OUT-OF-ORDER DATA
●MISSING DATA

Plus, additional 
business rules

Key1 Key1|Key2

Key2



Design Journey
02



Re-key, and Window  with key1 | key 2   

Design Approach # 1
Key1 Key1|Key2 Key2

Events Transcript Metadata

Session Window

Key1

Key1|Key2

Events

Transcripts

MetadataT1 expired

Conversation 1 Conversation 2

Set 2 expiry timers t1 = t0 + Xs, t2 = t0 + Ys

T2 expired

t0 + Xs  output

t0 + Ys  output

t0 + 60s  payload t0 + 180s   payload



Dependencies Latency Completeness

Need to wait for the 
session to end and the 
timers to expire before the 
output payloads can be 
produced. Not ideal based 
on the business SLO.

No state external to 
Dataflow. No external 
service dependencies.

In some cases all of the 
information required to 
creating the output 
payloads may not be 
available when the timers 
expire. This is due to the 
uncertain ordering of 
events.

Windowing allows for 
relatively simpler business 
logic implementation for 
creating the output 
payloads since re-keying 
produces outputs at the 
required granularity

Code Complexity

Design 1 Trade Offs



Design Approach # 2
Key1 Key1|Key2 Key2

Events Transcript Metadata

Session Window

Key1

Events

Transcripts

MetadataT1 expired

Conversation 1 Conversation 2

Set 2 expiry timers t1 = t0 + Xs, t2 = t0 + Ys

T2 expired

t0 + Xs  output

t0 + Ys  output

t0 + 60s  payload t0 + 180s   payload



Dependencies Latency Completeness

Need to wait for the 
session to end and the 
timers to expire before the 
output payloads can be 
produced. Not ideal based 
on the business SLO.

No state external to 
Dataflow. No external 
service dependencies.

In some cases all of the 
information required to 
creating the output 
payloads may not be 
available when the timers 
expire. This is due to the 
uncertain ordering of 
events.

Code Complexity

Granularity of outputs 
doesn’t match the inputs 
thereby increasing the 
business logic complexity 
required to produce the 
output payloads

Design 2 Trade Offs



Design Approach # 3
Key1 Key1|Key2 Key2

Events Transcript Metadata

Session Window

Events

Transcripts

Metadata

T1 expiredConversation 1

Set 2 expiry timers t1 = t0 + Xs, t2 = t0 + Ys

T2 expired

Dataflow Redis
Sorted

Sets

Conversation 2

Lettuce 6.1.8

t0 + 60s  payload t0 + 180s   payload



Latency Order Data Lifecycle

We rely on Redis sorted sets for 
accumulating the speech transcripts, 
we are able to maintain the order of 
the conversation as well as 
deduplicating the transcripts 
automagically

Low latency data store that dovetails 
well with streaming use cases

Redis offers a simple approach to 
manage cleanup of stale data

Redis



Dependencies Latency Completeness

No need for any additional 
wait time over and above 
the required timers. 

Subsecond end-to-end 
latency for ML predictions.

Dependency on a managed 
Redis instance. This also 
results in additional costs 
to host a Redis instance in 
the Cloud environment.

Least chance of 
incomplete outputs due to 
the ordering provided by 
Redis

Code Complexity

Much simpler processing 
because complicated 
scenarios related to 
cross-referencing the three 
data sources are 
eliminated. Only need to 
“act” on events.

Design 3 Trade Offs



Latency Metrics*

Dataflow PreProcessing Redis Predictions End-To-End

Machine Type Avg. (ms) Avg. (ms) Avg. (ms) Avg. (ms)

n1-standard-2 

t0+60s 1210.90 20.84 204.83 1441.75

n1-standard-2 

t0+180s 1155.52 18.62 260.33 1441.72

n2d-standard-4 

t0+60s 580.38 9.84 198.68 796.10

n2d-standard-4 

t0+180s 596.54 9.98 260.54 874.35

*Excluding the wait time to accumulate data for each event type



Speech-to-text Processing with Apache Beam and Redis

On-Prem

Predictions

Context
Pub/Sub

Label
Pub/Sub

Transcript
Pub/Sub

Pre-Processing
Dataflow

Summary 
Event
Pub/Sub

Prediction
Dataflow

Audit Info
BigQuery

Vertex AI
Vertex AI

redis

Final Solution



Lessons Learned

03



Representative test data

Observability

Granularity of inputs Configurability

Order of data

Latency

Lessons Learned

Real world scenarios include 
out-of-order data, duplicates, and 
missing elements

Business logic is greatly simplified if 
all inputs are at the same level of 
“granularity”

“Good” test data is imperative to 
shorten the development lifecycle 
and can be tricky to generate or 
acquire

Non functional requirements such as  
operational metrics and dead-letter 
queues are essential to gain insights 
into the processing state at any time

Levers should be provided to change 
the processing characteristics 
without changing any code

Latency requirements dictate the 
nature of the final solution

Functional Operational



https://cloud.google.com/consulting

Thank you!





NYC 2023

Shafiqa Iqbal 
& Ikenna Okolo

Hot Key Detection 
and Handling 

in Apache Beam Pipelines



BEAM SUMMIT NYC 2023# 



To this



BEAM SUMMIT NYC 2023# 

How stragglers can look like





BEAM SUMMIT NYC 2023# 

Primitives to keep in mind



BEAM SUMMIT NYC 2023# 

How a ParDo would work

(the, 1)

(to, 2)

(movie, 1)
(ever, 1)

(greatest, 1)

(be, 2)









Reasons for Stragglers

Uneven partitioning Uneven Complexity Uneven resources Bugs

● Process dictionary in 
parallel by first letter 
-> 6x speedup only 
by ahmdahl’s law 

● Join keys with some 
external input values

● Bad machines, 
network or resource 
contention

● Slow RPCs or bugs



Reasons for Stragglers

Uneven partitioning Uneven Complexity Uneven resources Bugs

● Process dictionary in 
parallel by first letter 
-> 6x speedup only 
by ahmdahl’s law 

● Join keys with some 
external input values

● Bad machines, 
network or resource 
contention

● Slow RPCs or bugs

Hot keys



BEAM SUMMIT NYC 2023# 

A hot key is a key with enough elements to negatively impact pipeline 
performance. These keys limit a Pipeline’s ability to process elements 
in parallel, which increases execution time.

Think about hotkeys in this way. Let's imagine there's a room filled 
with 150 Red, 30 Blue and 20 Green unsorted plates and there are 3 
students who are to arrange those plates in sorted orders (as seen 
here to the right).

Let's assume that student 1 will sort the Red plates, student 2 will sort 
the blue and the last student will sort the green plates.

What are hotkeys



BEAM SUMMIT NYC 2023# 

What are hotkeys contd…

From the illustration in the previous slide, students 2 and 3 will finish before student 1. Though the second and 
third students had already completed sorting their respective colored plates, they have to wait for the first 
student to complete theirs before the task can be termed as completed. This delay by student 1 is due to the 
larger number of plates they need to sort. In parallel processing, this is referred to as hotkeys.

If we replace the students with workers and the unsorted-plates with work-items to be processed, we can apply 
the same thinking to Dataflow pipelines. If the work-items are not evenly distributed, then there’s bound to be an 
issue of hotkeys which obviously would impact the performance of the Pipeline.

In subsequent slides, we will explain this using a Key Value pair to represent individual work-items.



BEAM SUMMIT NYC 2023# 

How do Hotkeys cause problems?

<K1, V>
     …
<K1, V>
<K2, V>
<K2, V>
<K3, V>
     ...
<Kn, V>

Source Data (KeyValues) GroupByKey

1,000,000 records

Note that the dataset is heavily imbalanced.

<K1, (V, V, V, …, V)>

K1 has broken the uniformity and thus is 
called the “hotkey.”

Worker 1

Worker 2

Worker n

<K2, (V, V)>

<Kn, (V, V, V)>

100% CPU utilization rate.

Pa
ra

lle
lis

m
 (N

um
be

r o
f a

ct
iv

e 
w

or
ke

rs
)

...

Time (t)

n

1

Idle. Done processing data.

Idle. Done processing data.

Problem: The next job 
will not start until 
Worker 1 finishes its 
transformations.

Transformation



BEAM SUMMIT NYC 2023# 

One of the quickest ways to identify a Job that is impacted by hotkeys is by taking a quick 
look at the worker CPU utilisation.  While some workers are maxing out at about 90% 
utilisation, some are idle at about <5% utilisation. This truly indicates that there is a 
possibility that the Job is stuck due to hotkeys.

How to identify hotkeys

Fxg-dna-gsi-edd-npe-dev-1, 2020-02-27_04_30_10-5380840952249221324



BEAM SUMMIT NYC 2023# 

What can you do? 

Using statistical analysis to pre-detect the hot keyData Monitoring, key partitioning, 
iterative optimization



BEAM SUMMIT NYC 2023# 

How do you fix hotkeys?

To resolve this issue, you may have to check that your data is evenly distributed. If a key has disproportionately many values, 
consider the following courses of action:

● Rekey their data. Apply a ParDo transform to output new key-value pairs.
● Autosharding
● Combine.Globally #withFanout(int fanout) 
● Java jobs should consider using the Combine.PerKey.withHotKeyFanout transform.
● Python jobs should consider using the CombinePerKey.with_hot_key_fanout transform.
● Finally, consider enabling Dataflow Shuffle (if using dataflow).

https://beam.apache.org/documentation/programming-guide/#pardo
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/transforms/Combine.PerKey.html
https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.core.html#apache_beam.transforms.core.CombinePerKey.with_hot_key_fanout
https://cloud.google.com/dataflow/docs/shuffle-for-batch


BEAM SUMMIT NYC 2023# 

Job not impacted by hotkeys anymore!



From this



To this



Hotkeys FAQ
Can we assign a more powerful machine to the worker that is processing the hotkey (i.e. 
Worker 1)?

Root cause: dataset is imbalanced.
Fix the root cause: balance the dataset.

>> Unfortunately, you cannot. Dataflow, by design, assigns the 
same machine to all of its workers.

In that case, if all workers run with powerful machines, the pipeline will finish quicker. 
+ It will be cheap, since most of them will be idle anyways.

>> This will not speed up the process. A powerful machine will 
still use up only one of its cores. Imagine a giant for-loop to 
better understand -- cores do not split the work of a for loop.

I enabled autoscale, but my job doesn’t finish any faster. Why?

>> You will see in monitoring that the average CPU utilization 
rate is far below 20%; therefore, Dataflow will not bring in 
more workers. Even if it does, it won’t help -- remember that 
you already have n-1 idle workers. Surely n idle workers won’t 
make a difference. 

<K1, V>
     …
<K1, V>
<K2, V>
<K2, V>
<K3, V>
     ...
<Kn, V>

<K1.1, V>
<K1.1, V>
<K1.2, V>
<K1.2, V>
     …
<K2, V>
     …
<Kn, V>

Solution: Classify the 
imbalanced key and 
break them down into 
smaller pieces.





NYC 2023

Troubleshooting Slow 
Running Beam Pipelines

By Mehak Gupta
Google Cloud, Canada



BEAM SUMMIT NYC 2023#  

About Me

Hello!

I’m Mehak 

Technical Solutions Specialist at Google Cloud



BEAM SUMMIT NYC 2023#

Goals

● Apache Beam pipeline troubleshooting techniques that would 
empower professionals to research and resolve Beam issues

● Self service skills would reduce MTTR (Mean Time To Recover) 
from a job failure significantly

● Share some tricks and samples of troubleshooting slow running 
beam pipelines using Dataflow as an example

1



BEAM SUMMIT NYC 2023#  

How to identify if the beam pipeline is slow/stuck

● Pipeline is running from a long time without reporting results

● Increased data watermark or system latency

● Pipeline is not consuming input

Troubleshooting Slow Running Beam Pipelines

2



BEAM SUMMIT NYC 2023#  

Troubleshooting Slow Running Beam Pipelines

Troubleshooting Workflow

3



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

4



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Troubleshooting using Logs 
Explorer View

5



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Data freshness increases
Check logs here

6



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

7



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

8



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

9



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

10



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Select which logs you want to 
view from here:

● worker-startup
● worker
● docker & kubelet
● shuffler

11



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

12



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Troubleshooting using 
Job Metrics Tab

13



BEAM SUMMIT NYC 2023#  14

Throughput dropping to zero

Troubleshoot slow/stuck dataflow jobs



BEAM SUMMIT NYC 2023#      15

High CPU Utilization

Troubleshoot slow/stuck dataflow jobs



BEAM SUMMIT NYC 2023#      16

High CPU Utilization

Troubleshoot slow/stuck dataflow jobs



BEAM SUMMIT NYC 2023#      17

Data Freshness

Troubleshoot slow/stuck dataflow jobs



BEAM SUMMIT NYC 2023#      18

System Latency

Troubleshoot slow/stuck dataflow jobs



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Stragglers in batch job 

19



BEAM SUMMIT NYC 2023#  

When a batch job takes a long time to process data, it would be best to check on 
the Straggler Workers

How to check it?

Troubleshoot slow/stuck dataflow jobs

20



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

There can be various causes of stragglers:

● Hot Keys: Hot keys can create stragglers because they limit ability of Dataflow to process 
elements in parallel.
a. Re-key your data. Apply a ParDo transform to output new key-value pairs.

● Re-shuffle your data to avoid a single worker having extra load

21

https://beam.apache.org/documentation/programming-guide/#pardo


BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Scenario 1: Long active user operation

22



BEAM SUMMIT NYC 2023#  

Processing Stuck/ Operation ongoing

Troubleshoot slow/stuck dataflow jobs

23



BEAM SUMMIT NYC 2023#  

Processing Stuck/ Operation ongoing

Troubleshoot slow/stuck dataflow jobs

From Logs Explorer

Query:

Results:

24



BEAM SUMMIT NYC 2023#  

Processing Stuck/ Operation ongoing

Troubleshoot slow/stuck dataflow jobs

From Logs Explorer

https://github.com/apache/beam/blob/master/sdks/java/io/google-cloud-platform/src/main/ja
va/org/apache/beam/sdk/io/gcp/bigquery/BigQueryHelpers.java

25

https://github.com/apache/beam/blob/master/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryHelpers.java
https://github.com/apache/beam/blob/master/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryHelpers.java


BEAM SUMMIT NYC 2023#  

Processing Stuck/ Operation ongoing

Troubleshoot slow/stuck dataflow jobs

26



BEAM SUMMIT NYC 2023#  

Apache Beam Issues/Feature Request

Troubleshoot slow/stuck dataflow jobs

27



BEAM SUMMIT NYC 2023#  

Troubleshoot slow/stuck dataflow jobs

Scenario 2: GC Thrashing/OOM

28



BEAM SUMMIT NYC 2023#  

GC Thrashing/OOM: Diagnostics Tab

Troubleshoot slow/stuck dataflow jobs

29



BEAM SUMMIT NYC 2023#  

GC Thrashing/OOM

Troubleshoot slow/stuck dataflow jobs

30



BEAM SUMMIT NYC 2023#  

General Recommendations

Troubleshoot slow/stuck dataflow jobs

● Use machine types with higher memory
○ Link: goo.gle/45USWe3

● Decrease the parallelism of processing by 
reducing the number of worker harness threads
○ Link: goo.gle/45RM6WT

● Do vertical autoscaling (Enable Dataflow Prime)
○ Link: goo.gle/3r3KZjv

31

https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/dataflow/docs/reference/pipeline-options#resource_utilization


BEAM SUMMIT NYC 2023#  

Performance Optimization using Dataflow profiling

● Cloud Profiler is available for Dataflow pipelines written in Apache Beam SDK for 
Java and Python, version 2.33.0 or later. 

● It can be enabled at pipeline start time

● E.g. For Java SDK, to enable CPU profiling, start the pipeline with the following 
option:
--dataflowServiceOptions=enable_google_cloud_profiler

32



NYC 2023

QUESTIONS?
mhkgupta@google.com

linkedin.com/in/mhkgupta

Troubleshooting Slow Running Beam Pipelines





NYC 2023

Zeeshan Khan

Resolving out of memory 
issues in Beam Pipelines





NYC 2023

Pranav Bhandari

Benchmarking Beam 
pipelines on Dataflow




