Apache Beaom and Ensemble
Modeling: A Winning Combination
for Machine Learning

Shubham Krishna
ML Engineer, ML6

NYC 2023

https://www.ml6.eu/

Machine Learning services
company.

We help our clients build
machine learning applications
using technologies such as
Apache Beam.

BEAM SUMMIT NYC 2023

SUMMIT

e Motivation

o Ensemble Modeling for solving complex use-cases
e Solution

o Beam Runinference:

m Seamless integration of ML in a Beam pipeline for semantic enrichment
m Use multiple Runinference transforms for pipelines with multiple ML

models
e Example

Motivation

Semantic Enrichment: ML models provide semantic information.

Business needs often involve the use of multiple machine
learning models, each addressing a specific subtask and
contributing unique capabilities.

Semantic Enrichment of Data

Categorise: Add specific label
Summarize

Sentiment Analysis

Translate

Extract important keywords
Image Annotation

Image Captioning

Speech Recognition

Ensemble Modeling

Sentiment
Speech to Text Analysis

N\ Language

Understanding

QS
Product

I Text to Speech »_’, Recommender

Support
Recommender

Response

Fig.l. Example of a Multi model pipeline, taken from a tutorial on
Runinference on Dataflow: Link

https://cloud.google.com/blog/products/data-analytics/influsing-ml-models-into-production-pipelines-with-dataflow

Ensemble Modeling: Sequential vs A/B

Problem

Seamlessly integrate ML models
in a Beam pipeline for semantic
enrichment of data.

Business needs require
combining multiple ML models.
(Ensemble Modeling)

Solution

Runinference API = Inference
with ML model in batch and
streaming pipelines, without
needing lots of boilerplate code.

Runinference API = Using
multiple Runlnference
transforms, build a pipeline that
consists of multiple ML models.

Runlinference >> Custom DoFn

Seamlessly integrate ML model
in a Beam pipeline for semantic

Custom

enrichment of data. DOFn

‘ torch.Tensor([1,2,31)
- ' torch.Tensor([4,5,6]) J

torch.Tensor([7,8,91)

*)/’w

Runinference

Threadl Thread2 Thread3 Threadu v

torch.Tensor([
Worker [1,2,31,
[4,5,6]1,
[7,8,91) imgfiip.cofn

Runinference supports popular ML frameworks

O Py TO rCh TensorFIow ‘0«

@ ONNX n<\<ID%A XGBoost

TENSORRT

How to use Runinference ?

from apache_beam.ml.inference.base import RunInference
with pipeline as p:
predictions = (p | beam.ReadFromSource('a_source')
| RunInference(ModelHandler)

)

BEAM SUMMIT NYC 2023

from apache_beam.ml. inference.sklearn_inference import SklearnModelHandlerNumpy
from apache_beam.ml. inference.sklearn_inference import SklearnModelHandlerPandas
from apache_beam.ml. inference.pytorch_inference import PytorchModelHandlerTensor
from apache_beam.ml. inference.pytorch_inference import
PytorchModelHandlerKeyedTensor

model_handler = SklearnModelHandlerNumpy(model_uri='model.pkl',
model_file_type=ModelFileType.JOBLIB)

model_handler = PytorchModelHandlerTensor(state_dict_path='model.pth',
model_class=PytorchLinearRegression,
model_params={'input_dim': 1, 'output_dim': 1})

BEAM SUMMIT NYC 2023

from apache_beam.ml.inference.base import
KeyedModelHandler

keyed_model_handler = \
KeyedModelHandler(PytorchModelHandlerTensor(...

with pipeline as p:
data = p | beam.Create([
("tmgl®'. np.arraylill, 2,314,561 -
('img2', np.arrayl[[1,2,3],[4,5,6],...
("img3', np.array[l1,2,31,14,5,61,..:
1)

predictions = data | RunInference(keyed_model_handler)

BEAM SUMMIT NYC 2023

Example

Image captioning and ranking
with Sequential Pattern:

1. BLIP: Image Captioning
2. CLIP: Ranking captions

Captions:
a. A cat wearing a hat, with blue background

. b. A cat in a toy hat that looks like a helicopter
Sequentlal Pattern c. A cat wearing a hat with a propeller on top

Ranked Captions:

1. A cat wearing a hat with a propeller on top
2. A cat in a toy hat that looks like a helicopter
3. A cat wearing a hat, with blue background

: Image Captioning CLIP: Caption Ranking

two dogs ruming across a
frosty Feld

whp.|e fin appeariv\g above
surface of the ocean

dict path in the widdle of o
forest of pine trees

“A man and a dog are

S reading a book together.”
Image captioning:

Image-Text Retrieval:
“The man sitting on a
couch is smiling.”

Matching score: 0.75]

VQA: “What is the “A pair of glasses”

dog wearing?”

1
| 1
1 1
1 1
+ -+
1 |
1 1
1 |
1 |
I i
I |
L 4
] |
1 |
l 1
I I
1 1
1 1
n 4
1 |
1 |
1 1
1 1
| |
| |
l 1

ML Inference Pipeline in Beam as a DAG

ML Inference Pipeline in Beam as a DAG

LN J

with beam.Pipeline() as pipeline:
img_url_pil_img = (
pipeline
| "ReadUrl" >> beam.C te(images_url)
| "ReadImages" >> beam.Map(read_img_from_url)

img_url_captions = (
img_url_pil_img
| "BLIPPreprocess" >> beam. ple(lambda img_url, img: (
img_url,
blip_preprocess(img, processor=blip_processor),

| "GenerateCaptions" >> RunInference(
model_handler=KeyedModelHandler(blip_model_handler),
inferenc rgs ngth": , "min_length":
"num_return_sequences": 5, "do_sample": True,},

PPostProcess peam.ParbDo
BLIPPostprocess(processor=blip_p

img_url_captions_ranking = (
({"image": img_url_pil_img, "captions": img_url_captions})
| "CreateImageCaptionPair" >> beam.C ey

]
(model_handle

beam)ParDo(CLIPPostProcess(processor=clip_processor))

img_url_captions_ranking | "FormatCaptions" >> beam.ParDo(FormatCaptions(3))

BEAM SUMMIT NYC 2023

Read Images from URLs

Ik

return

with

(Img URL, Image)

Preprocess Inputs for BLIP

os o
2 PRGSO
2 3 : /,—’/ / \\ \\\\\ 001 0234 0.004 098
2. e B / AN Mg
- £ RS e
- - - - -

(Img URL, torch.Tensor)

@ Hugging Face

Inference using BLIP

(Img URL, torch.Tensor)

l

(Img URL, RunInference Output)

Input(torch.Tensor) Prediction(torch.Tensor)

Inference using BLIP

(Img URL, torch.Tensor)

l

(Img URL, RunInference Output)

Input(torch.Tensor) Prediction(torch.Tensor)

PostProcess BLIP Output

(Img URL, RunInference Output)

|

|

(Img URL, [A cat wearing a hat, with blue background,
A cat in a toy hat that looks like a helicopter,
A cat wearing a hat with a propeller on top]

Grouping Image and BLIP Output

(Img URL, Image) (Img URL, [Captions])

(Img URL, {'image': [Image], 'captions': [
[A cat wearing a hat, with blue background,
A cat in a toy hat that looks like a helicopter,

A cat wearing a hat with a propeller on top]

]

}

Preprocess Inputs for CLIP

[Captions]

{'input_ids': torch.Tensor,
‘"pixel_values': torch.Tensor}

Inference using CLIP

{'input_ids': torch.Tensor,
Lecicmemciccceeoooo._.___3 'pixel_values': torch.Tensor}
e eoeo

class CLIPWrapper(CLIPModel):
def forward(self, **kwargs: Dict[str, torch.Tensor]):
kwargs = {key: tensor.squeeze(0) for key, tensor in kwargs.items()}
output = super().forward(**kwargs)

logits = output.logits_per_image
return logits

clip_model_handler = KeyedModelHandler(PytorchModelHandlerKeyedTensor(
state_dict_path="./clip_model.pth",
model_class=CLIPWrapper,
model_params={
"config": AutoConfig.from_pretrained("openai/clip-vit-base-patch32")

((Img URL, [Captions]), RunInference Output)

e K A ‘ 1,

‘ logits(torch.Tensor) max_batch_size=1,))

{'input_ids': torch.Tensor,

"'pixel_values': torch.Tensor}

| "CaptionRanking" >> RunInference(model_handler=clip_model_handler)

BEAM SUMMIT NYC 2023

PostProcess CLIP Output

((Img URL, [Captions]), RunInference Output)

1¢
ihttps://image_captioning/cat_with_hat.jpg,

'[('A cat wearing a hat with a propeller on top',
10.13382697),

'('A cat in a toy hat that looks like a helicopter’
10.32000825),

'('A cat wearing a hat, with blue background',
10.16968591)]

1)

return

Printing the results nicely

[(Img URL, [(Caption, Probability)]]

Image: cat_with_hat
Top 3 captions ranked by CLIP:

1: A cat
(Caption
2: A cat
(Caption
3: A cat
(Caption

wearing a hat with a propeller on top
probability: 0.4338)

in a toy hat that looks like a helicopter.
probability: 0.3200)

wearing a hat, with blue background.
probability: 0.1697)

Takeaways

Runlinference transform eliminates the need for extensive
boilerplate code in pipelines with machine learning models.

Multiple Runinference transforms enable complex pipelines with
minimal code for multi-ML models.

Example pipeline can be used for captioning images for
finetuning Stable Diffusion.

Code and Tutorial Link

Code: GitHub Link

Tutorial: Apache Beom Documentation Link

Slides: GitHub Link

https://github.com/shub-kris/Beam-Summit-2023/blob/main/ensemble-modeling/Apache_Beam_and_Ensemble_Modeling.ipynb
https://beam.apache.org/documentation/ml/multi-model-pipelines/
https://beam.apache.org/documentation/ml/tensorrt-runinference/

Shubhaom Krishna

in shubham-krishna-998922108

shub-kris

3=AM

NYC 2023

https://github.com/shub-kris

Per Entity Training
Pipelines in Apache Beam

Jasper Van den Bossche
ML6

About ML6

We are a group of Al and
machine learning experts
building custom Al solutions.

Amongst our engineers we
have several Apache Beam
contributors.

Development of ML applications
o What is training?
o What is MLOps?

What does per entity training mean?
o Training multiple models rather than a single model?

o Why use a per entity strategy
Example per entity training pipeline
Bonus: Using trained models in a Runinference pipeline

What is machine learning model

training?

What is machine learning model training?

def contains_firefly():

&

3

beam

%

=

Writing logic to detect the Beam macot is almost impossible

What is training a machine learning model?

OO0
RN

@
OO
ONON

0‘0‘(}& .A\%’A’A.A‘NA -

~ T NI Y

WA ‘«\/»‘v ‘)‘{ =
A

What is training a machine learning model?

\"lr \\v‘
“ ’ (Photo contains
\N A\'/ k Beam firefly

‘6' W
'o

How are machine learning

applications built and deployed?

MLOps: Level 0

Manual experiment steps

Data extraction 5 Data
and analysis ! preparation training

staging/preproduction/production

Model evaluation
and validation

MLOps: Level 1

Model
analysis

1

Orchestrated experiment

Pipeline
Data Data Data Model Model Model Source deployment

analysis E validation preparation training evaluation validation code O —

repository

Offline

staging/preproduction/production

Batch
fetching ~ Automated pipeline

CD: Model

-
Data Ly Model Model Model serving

—) 2 o T
training 7 evaluation ~~ validation

T

¥
ML metadata store

Performance Prediction
monitoring service

i

MLOps: Level 2

Model
analysis

37 5

Data Orchestrated Source
analysis experiment code

CI: Build, test, & package

> e pipeline components

repository

| l

experimentation/development/test CD: Pipeline
deployment

Packages

staging/preproduction/production

Feature
store

registry
*

Automatedpipeline

CD: Model
Data Data Data Model Model Model > serving

7 evaluation validation

S ion validation preparation training

é

ML metadata store

Performance Prediction
monitoring service

i

What is per entity training?

Example: Building multilingual chatbot

Bonjour!

What is per entity training?

&

(/o\/o\

Vq,/“ W
‘g:" \: 4:
oé’w.\"u‘

W

‘g\..

%‘Z%o

Dutch Language Model

e

-

‘ii
',A
J/ A o
o§w ‘\‘\'4,“ Wi
39’4049" Pad)
5 N V t\'

.‘“ \‘\
#qkq.AVQL Aﬂhw.

English Language Model

7

ﬂ X
/N 'A AA.

\ ﬂ”w"'hu..
\' W

I

' et
VRY N

O/ \4'; O
.“ J o’ﬂ““‘¢
\“’ LA OR
."“(.‘3): ‘V.
//,\\»04/,:\\» [A

.‘

Italian Language Model

J

Example: Detect production defects using sensor data

“ \"l \\v‘

'\
.

\\!;\V

—_ K__J o S

Example: Detect production defects using sensor data

Sensor 2

\ 0/»0 W O
.§“’;/ \‘\ “‘V
4"*& 3
AR
] ‘ u\\

‘Ch, 7
/’“\V/

Cap not

ounted properly

~

J

No defect
found

Sensor 1

Sensor 4

N7 v?"
»«»»w
’ !
Vi“ vv‘v’.
n
Q“

Component 1
burnt

N

J

No defect
found

Why use a per entity strategy”?

_ /?}

/
N

Vi
\\

‘?@;.A'M%
\

X
RN

\
W

TR

AN
WO
A~ TN

0

N/
ISR
)

W
T

“04,’,3\'

©
WK
1S

O

i
AW/

O @,
SN\
NAORBORNTO
o W\

N Y

WA AZIA
BTN

0\
N

X
WA

V)7

/)
V1
4

GPU Cluster

/‘
"
\s J

CPU Machine

Lightweight GPU

)
@)
C
()
| .
)
y—
£
[o%e]
@)
RS
£
O
.
+
| .
)
+
0]
@)
LL

Multilingual Large Language Model

Dutch Model

German Model

Portuguese Model

Address fairness and bias

Output
Probabilities

Add & Norm

Feed
Forward

| Add & Norm IT-:
Slaleltnlofin Mult-Head

Feed Attention
Forward 7 7

 — |

Add & Norm
f—>| Add & Norm | Ve

Multi-Head Multi-Head
Attention Attention

t At

_ J . —_—

Positional & Q Positional
Encoding ¥ Encoding

Input Output
Embedding Embedding

I I

Inputs Outputs
(shifted right)

J

Easier to detect problems

A5

]

A2 | .23

A% | A% | A3

Confusion Matrix

Less powerful hardware required Easier to address bias

d4 | 36

Dutch Model

0% | .

1
g =
German Model Multilingual Large Language Model

Portuguese Model

Steps

Faster training & inference Easier debugging

But there is one big problem:

How do | manage the training of
all of these models?

Manage training pipelines

schedule.csv logs.json

1026 hPa 1016 hPa

The solution”? Apache Beam!

Apache Beam can handle

streaming and batch data
Apache Beam can easily

prepare data for training

Apache Beam can run on
different runners depending on
the model's requirements
Abstraction in ML libraries

allows us to train models with
few lines of code

Let's look at an example of a

per entity training pipeline

Predicting incomes per education level

Hours per Native
Age Workclass Education Marital Status Occupation Relationship Race Sex Week Country Compensation

25 Private 11th Never-married Machine-op-inspct. Own-child Black Male 40 USA <=50K.
38 Private HS-grad Married-civ-spouse = Farming-fishing Husband White Male 50 USA <=50K.
Local-gov = Assoc-acdm Married-civ-spouse = Protective-serv Husband White Male 40 USA >50K.

Private Some-college Married-civ-spouse Machine-op-inspct. Husband Black Male 40 USA >50K.
? Some-college Never-married ? Own-child White Female 30 USA <=50K.

Pipeline overview

Clean Data

Group per
Education Level

Train Models

Save Models

Split data per education level

Accountant Bachelor

Plumber Bachelor

Occupation Education
P Cashier Bachelor

Accountant Bachelor

Engineer Master

Plumber Bachelor S Engineer

Server High School

Barista High School

Cashier Bachelor et 9 ehool

Barista High School

model per dataset

Accountant

Bachelor

Plumber

Bachelor

Engineer

Master

Server

High School

Cashier

Bachelor

Barista

High School

Model 1

Model 2

Model 3

Pipeline overview

with beam.Pipeline(options=pipeline_options) as pipeline:
_ =
pipeline | "Read Data" >> beam.io.ReadFromText(known_args.input)
| "Split data to make List" >> beam.Map(lambda x: x.split(','))
"Filter rows" >> beam.Filter(custom_filter)
"Create Key" >> beam.ParDo(CreateKey())

"Prepare Data" >> beam.ParDo(PrepareDataforTraining())
"Train Model" >> beam.ParDo(TrainModel())
| "Save" >> fileio.WriteToFiles(path=known_args.output,
sink=ModelSink()))

|
|
| "Group by education" >> beam.GroupByKey()
I
|

Step 1. Data preparation

def custom_filter(element):
return len(element) = 15 and '?' not in element \
and ' Bachelors' in element or ' Masters' in element \
or ' Doctorate' in element

Step 1. Data preparation

class PrepareDataforTraining(beam.DoFn):
def process(self, element, *args, *xkwargs):
key, values = element

#Convert to dataframe

df = pd.DataFrame(values)

last_ix = len(df.columns) - 1

X, y = df.drop(last_ix, axis=1), df[last_ix]

select categorical and numerical features
cat_ix = X.select_dtypes(include=['object', 'bool']).columns
num_ix = X.select_dtypes(include=['inté4', 'floaté4']).columns

label encode the target variable to have the classes 0 and 1
y = LabelEncoder().fit_transform(y)

yield (X, y, cat_ix, num_ix, key)

Step 2: Training the models

class TrainModel(beam.DoFn):

def process(self, element, *args, *xkwargs):
X, y, cat_ix, num_ix, key = element
steps = [('c', OneHotEncoder(handle_unknown="'ignore'), cat_ix),
('n', MinMaxScaler(), num_ix)]

one hot encode categorical, normalize numerical
ct = ColumnTransformer(steps)

wrap the model in a pipeline
pipeline = Pipeline(steps=[('t', ct), ('m', DecisionTreeClassifier())])

pipeline.fit(X, y)

yield (key, pipeline)

Step 3: Saving models

class ModelSink(fileio.FileSink):
def open(self, fh):
self._fh = fh

def write(self, record):
_, trained_model = record
pickled_model = pickle.dumps(trained_model)
self._fh.write(pickled_model)

def flush(self):
self._fh.flush()

Extending the pipeline

Train Models

Caleulate
Metrics

Extending pipeline with metrics

class EvaluateModel(beam.DoFn):
def __init__ (self, model_uri):
file = FileSystems.open(model_uri, 'rb')
self.model = pickle.load(file)

def process(self, element, *args, *xkwargs):
inputs, labels = element
predictions = self.model.predict(inputs)
accuracy = sklearn.metrics.accuracy_score(y_pred=predictions,
y_true=labels)
f1 = sklearn.metrics.fl_score(y_pred=predictions, y_true=labels)
recall = sklearn.metrics.recall_score(y_pred=predictions, y_true=labels)

file = FileSystems.open(f'model_uri_metrics', 'web')
file.writelines([f'accuracy: {accuracy}', f'fl: {fl1l}', f'recall:
{recall}'])

OV

How does this pipeline fit in the MLOps architecture?

Model ML, Ops
analysis

i

Orchestrated experiment

Pipeline
Data Data Data Model Model Model deployment

I
analysis [validation preparation training evaluation —~ validation Solice g —)

repository

Offline

staging/preproduction/production

Automated pipeline

Dat: Dat: Dat: Model Model Model CO-Mode!
ata ata ata odel el o servin
extraction 7 validation preparation o training 7 evaluation ~~ validation g

4

ML metadata store

Per
monitoring

Let's try out our model using the

Runinference trasform

Bonus: Inference in Apache Beam

Model 1
RunInference PostProcessing

Data Entity 1

Model 2

RunInference PostProcessing

Load Data Group per Entity

Data Entity 2

Summary

Apache Beam is more and more becoming technology that can
be used in advanced MLOps setups

Per entity strategy has several advantages
o Requires less powerful hardware
Faster training and inference
Easier to address bias
Easier to debug

Apache Beam a perfect candidate for per entity training

pipelines thanks to
o Excellent for data preprocessing and preparation
o Different runners depending on model requirements
o Abstraction in ML libraries that maoke it easy to train a model

Jasper Van den Bossche

https://www.linkedin.com/in/jasper-van-den-bossche/
https://github.com/jaxpr
https://www.ml6.eu/
3=AM

NYC 2023

How many ways can you
skin a cat, iIf the catis @
oroblem that needs an ML

model to solve?

Kerry Donny-Clark

Write your own model
handler for Runinferencel

Ritesh Ghorse

Power Realtime Machine
Learning Feature
Engineering with Managed

Beam at LinkedIn

David Shaoo
& Yanan Hao

Optimizing Machine
Learning Workloads on

Dataflow

Alex Chan

ML model updates with
side inputs in Dataflow

streaming pipelines

Anand Inguva

Use Apache Beam to build
Machine Learning Feature

System at Affirm

Use Apache Beam To Build

Machine Learning Feature
System At Affirm

- Hao Xu

0 N

ABOUT ME

Affirm -> JP Mo

TABLE OF CONTENTS

O1 02
BACKGROUND PAIN POINTS
e MLFS e Slowness
e Stream Platform e Learning curves
03 04
SOLUTION OUTCOME

e Unified transformation e Performance
e OOTBAPIs e Dev Velocity

Background

® BNPL
® Machine learning feature store
® Streaming and Batch Compute Platform

The Story of BNPL

Your 3 payments Pick a payment plan
of $50.00
$233.00/montniy IETEIENN
B 000% 8000 450000

Total of payments $150.00 v

$12°-°°/momhly

E APR Interest Total
Set up automatic payments (optional) 15.01% $22.66 $522.66

You'll pay $50.00 on each due date.

ssz.OOImonthly

APR Interest Total
Complete your order 15.01% $42.40 $542.40

The Story of BNPL

First payment E Third payment l E"l

I 03-15 I 05-15
02-15 04-15

Second Payment i Forth payment

If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the
issue? Should we approve another loan for them?

Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days.
Utilizing stream data can help prevent such delays in the future.

s amazon §g kafka
= KINESIS |

Accept ACH Payments

Feature Store

Raw / Structured Data Models

Engineering Feature Store
LN N 5 ;

Figure 1. A feature store is the interface between feature engineering and model development.

Pain Points

Development Velocity

Slow backfilling of stream features.
Excessive code required to define a feature.

Variety

Inability to join two streams from Kinesis
together, which is typically required for
stateful processing.

Visibility
Lack of registry to quickly lookup data
sources, features and metadata.

Solution

MLFS Architecture

(@ FEAST

user_payments_view
source: flink,

}

schema: user_id, payment_result,

Apache

&FI nk

Beam

Y
APACHE K

— - opPar

VMQSQRL—' @,

Online Store)
serving

é]—x o ow

Offline Store training pipeline

Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time

5 FEAST Jobjar
user_payments_wew r—-—- - — — — — — — —

{
source: flink,

schema: user_id,
payment_result, d
} - — generate job statefill job

Lf/ ‘MHSQRL

[1anguage-specific .
Language Portability Architecture I anguage-agnostic containers:
- name: spark-kubernetes-executor

volumeMounts:

“—‘ Job Server - name: beam-data
Job API mountPath: /opt/apache/beam/
initContainers:

Runner API
@ S
- name: init-beam

&

/\«’”& image: apache/beam_python3.7_sdk
command:
Backend (e.g. Spark) = GO
- /opt/apache/beam/boot

mountPath: /init-container/data

an API volumes:
. - name: beam-data

Fn API

Executable Executable - /init-container/data/boot
TaSkz TaSK N volumeMounts:
Stage Stage
- name: beam-data

Unified Transformation Interface

class UnifiedTransformer (Transformer[beam.PCollection, beam.PCollection]):

def self) -> beam.WindowInto:
return self._ window

def self) -> beam.PTransform:
return self. event_transform

def self) -> beam.PTransform:
return self. aggregator

def self, inputs: beam.PCollection) -> beam.PCollection:
if self feast_context.runner == Runner.flink:

if self.window:
inputs = inputs | self.window

return
inputs
| self.event_ transform.with output types(Tuple)
| self.aggregator.with_ output_types (Tuple)

elif self.feast context.runner == Runner.spark:
return
inputs
| self.event_ transform.with output types(Tuple)
| self.aggregator.with_ output_types (Tuple)

r ("Unsupported runner: {}.".format(self.feast_context.runner))

Unified Transformation Interface

entities=[entity registry['user ari']],

ttl=timedelta (days=0) ,

schema=[
Field(name="user ari", dtype=String),
Field(name="timestamp", dtype=UnixTimestamp) ,
Field(name="latest payment fail", dtype=UnixTimestamp),
Field(name="latest payment fail ach nsf", dtype=UnixTimestamp) ,

] 4

online=True,

source=user_payment fails stream source,

timestamp field="timestamp",

tags={},

mode="£f1link",

def (feast context: FeastContext, inputs: PCollection) -> PCollection:
transformer = UnifiedTransformer (

feast_context=feast_context,

aggregator=LatestFeatureAggregator (feast context, 'timestamp'),

event transform=extract_payment fail data,

ormer.run (inputs)

Performance boost

100 @ MLFS v0
Backﬁlling time B MLFSv1

Backfilling time
improved by 80%

75

Code lines >0

Reduced 100+ lines to
20+ lines 25

Registry 0 . -

200+ data sources
100+ features

The time spent to backfill features for feature
time_since_user_checkout and
tiem_since_user_last_payment._failure

Future improvement

1. OOTB transformation interface
2. Transformation framework

3. Improvement on Beam Spark Runner

