
NYC 2023

Shubham Krishna
ML Engineer, ML6

Apache Beam and Ensemble
Modeling: A Winning Combination

for Machine Learning

4

https://www.ml6.eu/

BEAM SUMMIT NYC 2023#
5

Machine Learning services
company.

We help our clients build
machine learning applications
using technologies such as
Apache Beam.

Who is ML6?

NYC 2023

Philippe Moussalli
Machine Learning Engineer, ML6

Credits

BEAM SUMMIT NYC 2023#

Agenda

● Motivation
○ Ensemble Modeling for solving complex use-cases

● Solution
○ Beam RunInference:

■ Seamless integration of ML in a Beam pipeline for semantic enrichment
■ Use multiple Runinference transforms for pipelines with multiple ML

models
● Example

BEAM SUMMIT NYC 2023#

Motivation

● Semantic Enrichment: ML models provide semantic information.

● Business needs often involve the use of multiple machine
learning models, each addressing a specific subtask and
contributing unique capabilities.

8

BEAM SUMMIT NYC 2023#

Semantic Enrichment of Data

● Categorise: Add specific label
● Summarize
● Sentiment Analysis
● Translate
● Extract important keywords
● Image Annotation
● Image Captioning
● Speech Recognition
● …..

9

BEAM SUMMIT NYC 2023#

Ensemble Modeling

10

Fig.1. Example of a Multi model pipeline, taken from a tutorial on
RunInference on Dataflow: Link

https://cloud.google.com/blog/products/data-analytics/influsing-ml-models-into-production-pipelines-with-dataflow

BEAM SUMMIT NYC 2023#

Text and horizontal image

 PAGE NUMBER

Ensemble Modeling: Sequential vs A/B

11

Sequential Pattern

A/B Pattern

BEAM SUMMIT NYC 2023#

Problem Solution

Seamlessly integrate ML models
in a Beam pipeline for semantic
enrichment of data.

RunInference API = Inference
with ML model in batch and
streaming pipelines, without
needing lots of boilerplate code.

Business needs require
combining multiple ML models.
(Ensemble Modeling)

RunInference API = Using
multiple RunInference
transforms, build a pipeline that
consists of multiple ML models.

12

BEAM SUMMIT NYC 2023#

RunInference >> Custom DoFn

Seamlessly integrate ML model
in a Beam pipeline for semantic
enrichment of data.

13

BEAM SUMMIT NYC 2023#

RunInference supports popular ML frameworks

BEAM SUMMIT NYC 2023#

How to use RunInference ?

15

BEAM SUMMIT NYC 2023#

ModelHandlers

BEAM SUMMIT NYC 2023#

KeyedModelHandler

BEAM SUMMIT NYC 2023#

Example

Image captioning and ranking
with Sequential Pattern:

1. BLIP: Image Captioning
2. CLIP: Ranking captions

18

BEAM SUMMIT NYC 2023#

BLIP: Image Captioning CLIP: Caption Ranking

19

BEAM SUMMIT NYC 2023#

ML Inference Pipeline in Beam as a DAG

20

[URLs]

BEAM SUMMIT NYC 2023#

ML Inference Pipeline in Beam as a DAG

21

BEAM SUMMIT NYC 2023#

Read Images from URLs

22

(Img URL, Image)

[URLs]

BEAM SUMMIT NYC 2023#

Preprocess Inputs for BLIP

23

(Img URL, torch.Tensor)

BEAM SUMMIT NYC 2023#
24

Inference using BLIP

BEAM SUMMIT NYC 2023#

Inference using BLIP

25

BEAM SUMMIT NYC 2023#

PostProcess BLIP Output

26

BEAM SUMMIT NYC 2023#

Grouping Image and BLIP Output

27

BEAM SUMMIT NYC 2023#

Preprocess Inputs for CLIP

28

BEAM SUMMIT NYC 2023#

Inference using CLIP

29

BEAM SUMMIT NYC 2023#

PostProcess CLIP Output

30

BEAM SUMMIT NYC 2023#

Printing the results nicely

31

BEAM SUMMIT NYC 2023#

Takeaways

● RunInference transform eliminates the need for extensive
boilerplate code in pipelines with machine learning models.

● Multiple RunInference transforms enable complex pipelines with
minimal code for multi-ML models.

● Example pipeline can be used for captioning images for
finetuning Stable Diffusion.

32

BEAM SUMMIT NYC 2023#

Code and Tutorial Link

33

Code: GitHub Link

Tutorial: Apache Beam Documentation Link

Slides: GitHub Link

https://github.com/shub-kris/Beam-Summit-2023/blob/main/ensemble-modeling/Apache_Beam_and_Ensemble_Modeling.ipynb
https://beam.apache.org/documentation/ml/multi-model-pipelines/
https://beam.apache.org/documentation/ml/tensorrt-runinference/

NYC 2023

QUESTIONS?
 shubham-krishna-998922108

 shub-kris

Shubham Krishna

https://github.com/shub-kris

NYC 2023

Jasper Van den Bossche
ML6

Per Entity Training
Pipelines in Apache Beam

BEAM SUMMIT NYC 2023#

About ML6

We are a group of AI and
machine learning experts
building custom AI solutions.

Amongst our engineers we
have several Apache Beam
contributors.

BEAM SUMMIT NYC 2023#

Agenda

● Development of ML applications
○ What is training?
○ What is MLOps?

● What does per entity training mean?
○ Training multiple models rather than a single model?
○ Why use a per entity strategy

● Example per entity training pipeline
● Bonus: Using trained models in a RunInference pipeline

BEAM SUMMIT NYC 2023#

What is machine learning model
training?

BEAM SUMMIT NYC 2023#

What is machine learning model training?

Writing logic to detect the Beam macot is almost impossible

BEAM SUMMIT NYC 2023#

What is training a machine learning model?

BEAM SUMMIT NYC 2023#

What is training a machine learning model?

BEAM SUMMIT NYC 2023#

How are machine learning
applications built and deployed?

BEAM SUMMIT NYC 2023#

MLOps: Level 0

BEAM SUMMIT NYC 2023#

MLOps: Level 1

BEAM SUMMIT NYC 2023#

MLOps: Level 2

BEAM SUMMIT NYC 2023#

What is per entity training?

BEAM SUMMIT NYC 2023#

Example: Building multilingual chatbot

Guten Tag! 안녕하세
요!

Bonjour!

BEAM SUMMIT NYC 2023#

What is per entity training?

BEAM SUMMIT NYC 2023#

Example: Detect production defects using sensor data

BEAM SUMMIT NYC 2023#

Example: Detect production defects using sensor data

BEAM SUMMIT NYC 2023#

Why use a per entity strategy?

BEAM SUMMIT NYC 2023#

 Reduce Model Infrastructure Requirements

BEAM SUMMIT NYC 2023#

Faster training & inference

BEAM SUMMIT NYC 2023#

Address fairness and bias

BEAM SUMMIT NYC 2023#

Easier to detect problems

BEAM SUMMIT NYC 2023#

Simpler models have the following advantages

Faster training & inference Easier debugging

Easier to address biasLess powerful hardware required

BEAM SUMMIT NYC 2023#

But there is one big problem:
How do I manage the training of
all of these models?

BEAM SUMMIT NYC 2023#

Manage training pipelines

BEAM SUMMIT NYC 2023#

The solution? Apache Beam!

- Apache Beam can handle
streaming and batch data

- Apache Beam can easily
prepare data for training

- Apache Beam can run on
different runners depending on
the model’s requirements

- Abstraction in ML libraries
allows us to train models with
few lines of code

BEAM SUMMIT NYC 2023#

Let’s look at an example of a
per entity training pipeline

BEAM SUMMIT NYC 2023#

Predicting incomes per education level

Age Workclass Education Marital Status Occupation Relationship Race Sex
Hours per

Week
Native

Country Compensation

25 Private 11th Never-married Machine-op-inspct Own-child Black Male 40 USA <=50K.

38 Private HS-grad Married-civ-spouse Farming-fishing Husband White Male 50 USA <=50K.

28 Local-gov Assoc-acdm Married-civ-spouse Protective-serv Husband White Male 40 USA >50K.

44 Private Some-college Married-civ-spouse Machine-op-inspct Husband Black Male 40 USA >50K.
18 ? Some-college Never-married ? Own-child White Female 30 USA <=50K.

BEAM SUMMIT NYC 2023#

Pipeline overview

BEAM SUMMIT NYC 2023#

Split data per education level

BEAM SUMMIT NYC 2023#

Train model per dataset

BEAM SUMMIT NYC 2023#

Pipeline overview

BEAM SUMMIT NYC 2023#

Step 1: Data preparation

BEAM SUMMIT NYC 2023#

Step 1: Data preparation

BEAM SUMMIT NYC 2023#

Step 2: Training the models

BEAM SUMMIT NYC 2023#

Step 3: Saving models

BEAM SUMMIT NYC 2023#

Extending the pipeline

BEAM SUMMIT NYC 2023#

Extending pipeline with metrics

BEAM SUMMIT NYC 2023#

How does this pipeline fit in the MLOps architecture?

BEAM SUMMIT NYC 2023#

Let’s try out our model using the
RunInference trasform

BEAM SUMMIT NYC 2023#

Bonus: Inference in Apache Beam

BEAM SUMMIT NYC 2023#

Summary

● Apache Beam is more and more becoming technology that can
be used in advanced MLOps setups

● Per entity strategy has several advantages
○ Requires less powerful hardware
○ Faster training and inference
○ Easier to address bias
○ Easier to debug

● Apache Beam a perfect candidate for per entity training
pipelines thanks to

○ Excellent for data preprocessing and preparation
○ Different runners depending on model requirements
○ Abstraction in ML libraries that make it easy to train a model

NYC 2023

QUESTIONS?

https://www.linkedin.com/in/jasper-van-den-bossche/
https://github.com/jaxpr

https://www.ml6.eu/

Jasper Van den Bossche

NYC 2023

Kerry Donny-Clark

How many ways can you
skin a cat, if the cat is a

problem that needs an ML
model to solve?

NYC 2023

Ritesh Ghorse

Write your own model
handler for RunInference!

NYC 2023

David Shao
& Yanan Hao

Power Realtime Machine
Learning Feature

Engineering with Managed
Beam at LinkedIn

NYC 2023

Alex Chan

Optimizing Machine
Learning Workloads on

Dataflow

NYC 2023

Anand Inguva

ML model updates with
side inputs in Dataflow

streaming pipelines

NYC 2023

Hao Xu

Use Apache Beam to build
Machine Learning Feature

System at Affirm

Use Apache Beam To Build
Machine Learning Feature
System At Affirm

- Hao Xu

ABOUT ME
Earnest -> Fast -> Affirm -> JP Morgan & Chase

01

TABLE OF CONTENTS

● MLFS
● Stream Platform

● Slowness
● Learning curves

● Unified transformation
● OOTB APIs

● Performance
● Dev Velocity

01

03

02

04

BACKGROUND PAIN POINTS

SOLUTION OUTCOME

Background
● BNPL
● Machine learning feature store
● Streaming and Batch Compute Platform

The Story of BNPL

The Story of BNPL

04-15

Third payment

05-15

Forth payment

02-15

First payment

03-15

Second Payment

If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the
issue? Should we approve another loan for them?

Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days.
Utilizing stream data can help prevent such delays in the future.

Feature Store

Figure 1. A feature store is the interface between feature engineering and model development.

Pain Points

Pain Points

Development Velocity
Slow backfilling of stream features.
Excessive code required to define a feature.

Inability to join two streams from Kinesis
together, which is typically required for
stateful processing.

Lack of registry to quickly lookup data
sources, features and metadata.

Variety

Visibility

Solution

MLFS Architecture

Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time

Unified Transformation Interface
class UnifiedTransformer(Transformer[beam.PCollection, beam.PCollection]):

 @property
 def window(self) -> beam.WindowInto:
 return self._window

 @property
 def event_transform(self) -> beam.PTransform:
 return self._event_transform

 @property
 def aggregator(self) -> beam.PTransform:
 return self._aggregator

 def run(self, inputs: beam.PCollection) -> beam.PCollection:
 if self.feast_context.runner == Runner.flink:
 if self.window:
 inputs = inputs | self.window
 return (
 inputs
 | self.event_transform.with_output_types(Tuple)
 | self.aggregator.with_output_types(Tuple)
)
 elif self.feast_context.runner == Runner.spark:
 return (
 inputs
 | self.event_transform.with_output_types(Tuple)
 | self.aggregator.with_output_types(Tuple)
)
 else:
 raise ValueError("Unsupported runner: {}.".format(self.feast_context.runner))

Unified Transformation Interface

@stream_feature_view(
 entities=[entity_registry['user_ari']],
 ttl=timedelta(days=0),
 schema=[
 Field(name="user_ari", dtype=String),
 Field(name="timestamp", dtype=UnixTimestamp),
 Field(name="latest_payment_fail", dtype=UnixTimestamp),
 Field(name="latest_payment_fail_ach_nsf", dtype=UnixTimestamp),
],
 online=True,
 source=user_payment_fails_stream_source,
 timestamp_field="timestamp",
 tags={},
 mode="flink",
)
def user_last_payment_fail(feast_context: FeastContext, inputs: PCollection) -> PCollection:
 transformer = UnifiedTransformer(
 feast_context=feast_context,
 aggregator=LatestFeatureAggregator(feast_context, 'timestamp'),
 event_transform=extract_payment_fail_data,
)
 return transformer.run(inputs)

Outcome

Performance boost

The time spent to backfill features for feature
time_since_user_checkout and

tiem_since_user_last_payment_failure

Backfilling time
improved by 80%

Backfilling time
80%

Reduced 100+ lines to
20+ lines

Code lines
60%

200+ data sources
100+ features

Registry
40%

Future improvement
1. OOTB transformation interface
2. Transformation framework
3. Improvement on Beam Spark Runner

