Apache Beam and Ensemble Modeling: A Winning Combination for Machine Learning

> Shubham Krishna ML Engineer, <u>ML6</u>

Who is ML6?

Machine Learning services company.

We help our clients build machine learning applications using technologies such as Apache Beam.

Philippe Moussalli Machine Learning Engineer, ML6

🔍 Agenda

• Motivation

- Ensemble Modeling for solving complex use-cases
- Solution
 - Beam RunInference:
 - Seamless integration of ML in a Beam pipeline for semantic enrichment
 - Use multiple Runinference transforms for pipelines with multiple ML models
- Example

• Semantic Enrichment: ML models provide semantic information.

• Business needs often involve the use of multiple machine learning models, each addressing a specific subtask and contributing unique capabilities.

Semantic Enrichment of Data

- Categorise: Add specific label
- Summarize
- Sentiment Analysis
- Translate

.

- Extract important keywords
- Image Annotation
- Image Captioning
- Speech Recognition

Q Ensemble Modeling

Fig.1. Example of a Multi model pipeline, taken from a tutorial on RunInference on Dataflow: Link

Ensemble Modeling: Sequential vs A/B

Problem

Seamlessly integrate ML models in a Beam pipeline for semantic enrichment of data.

Business needs require combining multiple ML models. (Ensemble Modeling)

Solution

RunInference API = Inference with ML model in batch and streaming pipelines, without needing lots of boilerplate code.

RunInference API = Using multiple RunInference transforms, build a pipeline that consists of multiple ML models. Seamlessly integrate ML model in a Beam pipeline for semantic enrichment of data.

Custom DoFn

RunInference

Q ModelHandlers

•••

from apache_beam.ml.inference.sklearn_inference import SklearnModelHandlerNumpy
from apache_beam.ml.inference.sklearn_inference import SklearnModelHandlerPandas
from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerTensor
from apache_beam.ml.inference.pytorch_inference import
PytorchModelHandlerKeyedTensor
model_handler = SklearnModelHandlerNumpy(model_uri='model.pkl',
 model_file_type=ModelFileType.JOBLIB)

```
model_handler = PytorchModelHandlerTensor(state_dict_path='model.pth',
  model_class=PytorchLinearRegression,
  model_params={'input_dim': 1, 'output_dim': 1})
```

Q KeyedModelHandler


```
from apache_beam.ml.inference.base import
KeyedModelHandler
keyed_model_handler = \
KeyedModelHandler(PytorchModelHandlerTensor(...))
```

```
with pipeline as p:
data = p | beam.Create([
 ('img1', np.array[[1,2,3],[4,5,6],...]),
 ('img2', np.array[[1,2,3],[4,5,6],...]),
 ('img3', np.array[[1,2,3],[4,5,6],...]),
 ])
```

predictions = data | RunInference(keyed_model_handler)

Example

Image captioning and ranking with Sequential Pattern:

BLIP: Image Captioning
 CLIP: Ranking captions

BLIP: Image Captioning

CLIP: Caption Ranking

A ML Inference Pipeline in Beam as a DAG

0

A ML Inference Pipeline in Beam as a DAG


```
with beam.Pipeline() as pipeline:
    img_url_pil_img = (
          "ReadUrl" >> beam.Create(images url)
          "ReadImages" >> beam.Map(read_img_from_url)
    img_url_captions = (
        ima url pil ima
          "BLIPPreprocess" >> beam.MapTuple(lambda img url, img: (
                img url,
                blip_preprocess(img, processor=blip_processor),
          "GenerateCaptions" >> RunInference(
            model handler=KeyedModelHandler(blip model handler),
            inference_args={"max_length": 50, "min_length": 10,
                "num_return_sequences": 5, "do_sample": True, },
          "BLIPPostProcess" >> beam.ParDo(
          BLIPPostprocess(processor=blip_processor))
    img_url_captions_ranking = (
       ({"image": img_url_pil_img, "captions": img_url_captions})
          "CreateImageCaptionPair" >> beam.CoGroupByKey()
          "CLIPPreprocess" >> beam.ParDo(CLIPPreprocess(processor=clip_processor))
        "CaptionRanking"
       >> RunInference(model_handler=KeyedModelHandler(clip_model_handler))
        "CLIPPostProcess" >>
beam)ParDo(CLIPPostProcess(processor=clip processor))
    img url captions ranking | "FormatCaptions" >> beam.ParDo(FormatCaptions(3))
```

Read Images from URLs

•••

```
def read_img_from_url(img_url: str) -> Tuple[str,
Image.Image]:
    image = Image.open(requests.get(img_url, stream=True).raw)
    return img_url, image
with beam.Pipeline() as pipeline:
    img_url_pil_img = (
        pipeline
        | "ReadUrl" >> beam.Create(images_url)
        | "ReadImages" >> beam.Map(read_img_from_url)
    }
}
```

(Img URL, Image)

Preprocess Inputs for BLIP

•••

def blip_preprocess(image: Image.Image, processor: BlipProcessor)-> torch.Tensor: inputs = processor(images=image, return_tensors="pt") return inputs.pixel_values

blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioningbase")

img_url_captions = (
 img_url_pil_img
 | "BLIPPreprocess"
 >> beam.MapTuple(
 lambda img_url, img: (
 img_url,
 blip_preprocess(img, processor=blip_processor),

(Img URL, torch.Tensor)

•••

```
| "GenerateCaptions"
>> RunInference(
   model_handler=blip_model_handler,
   inference_args={
        "max_length": 50,
        "min_length": 10,
        "num_return_sequences": 5,
        "do_sample": True,
     },
)
```


Input(torch.Tensor) Prediction(torch.Tensor)

$\bigcirc \bigcirc \bigcirc$

gen_fn = mod_make_tensor_model_fn('generate')

```
blip_model_handler = KeyedModelHandler(
    PytorchModelHandlerTensor(
      state_dict_path="./blip_model.pth",
      model_class=BlipForConditionalGeneration,
      model_params={
         "config": AutoConfig.from_pretrained(model_id)
    },
      max_batch_size=1,
      device = "gpu"
      inference_fn=gen_fn))
```

PostProcess BLIP Output

mg UKL, L A cat wearing a nat, with blue background, A cat in a toy hat that looks like a helicopter, A cat wearing a hat with a propeller on top]

•••

```
class BLIPPostprocess(beam.DoFn):
    def __init__(self, processor: BlipProcessor):
        self._processor = processor
    def process(self, element):
        img_url, output = element
        captions = blip_processor.batch_decode(output.inference,
```

skip_special_tokens=True)
 yield img_url, captions

| "BLIPPostProcess" >> beam.ParDo(BLIPPostprocess(processor=blip_processor))

Grouping Image and BLIP Output

•••

```
img_url_captions_ranking = (
  ({"image": img_url_pil_img, "captions": img_url_captions})
  | "CreateImageCaptionPair" >> beam.CoGroupByKey()
```

Preprocess Inputs for CLIP

• • •

class CLIPPreprocess(beam.DoFn): def __init__(self, processor: CLIPProcessor): self._processor = processor

return_tensors="pt
padding=True)

yield (img_url, captions), processed_output

clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-basepatch32")

Inference using CLIP

.....

```
class CLIPWrapper(CLIPModel):
```

```
def forward(self, **kwargs: Dict[str, torch.Tensor]):
    # Squeeze because RunInference adds an extra dimension, which is empty.
    kwargs = {key: tensor.squeeze(0) for key, tensor in kwargs.items()}
    output = super().forward(**kwargs)
    logits = output.logits_per_image
    return logits
```

```
clip_model_handler = KeyedModelHandler(PytorchModelHandlerKeyedTensor(
    state_dict_path="./clip_model.pth",
    model_class=CLIPWrapper,
    model_params={
        "config": AutoConfig.from_pretrained("openai/clip-vit-base-patch32")
    },
    max_batch_size=1,))
```

"CaptionRanking" >> RunInference(model_handler=clip_model_handler)

PostProcess CLIP Output

•••

class CLIPPostProcess(beam.DoFn): def __init__(self, processor: CLIPProcessor): self._processor = processor def process(self, element): (image_url, captions), prediction = element prediction_results = prediction.inference prediction_probs = prediction_results.softmax(dim=-1).cpu().detach().numpy() ranking = np.argsort(-prediction_probs) sorted_caption_prob_pair = [(captions[idx], prediction_probs[idx]) for idx in ranking] return [(image_url, sorted_caption_prob_pair)]

| "CLIPPostProcess" >> beam.ParDo(CLIPPostProcess(processor=clip_processor))

• Printing the results nicely

Image: cat_with_hat

Top 3 captions ranked by CLIP:

1: A cat wearing a hat with a propeller on top

(Caption probability: 0.4338)

2: A cat in a toy hat that looks like a helicopter. (Caption probability: 0.3200)

3: A cat wearing a hat, with blue background. (Caption probability: 0.1697)

Q Takeaways

• RunInference transform eliminates the need for extensive boilerplate code in pipelines with machine learning models.

• Multiple RunInference transforms enable complex pipelines with minimal code for multi-ML models.

• Example pipeline can be used for captioning images for finetuning Stable Diffusion.

Code: <u>GitHub Link</u>

Tutorial: <u>Apache Beam Documentation Link</u>

Slides: <u>GitHub Link</u>

Shubham Krishna

QUESTIONS?

in shubham-krishna-998922108

BEAM SUMMIT

Per Entity Training Pipelines in Apache Beam

Jasper Van den Bossche ML6

We are a group of AI and machine learning experts building custom AI solutions.

Amongst our engineers we have several Apache Beam contributors.

🔍 Agenda

- Development of ML applications
 - What is training?
 - What is MLOps?
- What does per entity training mean?
 - Training multiple models rather than a single model?
 - Why use a per entity strategy
- Example per entity training pipeline
- Bonus: Using trained models in a RunInference pipeline

Q

What is machine learning model training?
What is machine learning model training?

Writing logic to detect the Beam macot is almost impossible

What is training a machine learning model?

What is training a machine learning model?

How are machine learning applications built and deployed?

A MLOps: Level 0

BEAM SUMMIT NYC 2023

A MLOps: Level 1

A MLOps: Level 2

What is per entity training?

Example: Building multilingual chatbot

What is per entity training?

Example: Detect production defects using sensor data

Example: Detect production defects using sensor data

Why use a per entity strategy?

Reduce Model Infrastructure Requirements

|--|--|--|--|

GPU Cluster

CPU Machine

Lightweight GPU

Address fairness and bias

Easier to detect problems

.36

.08

.33

.23

.25

.12

.32

.31

Simpler models have the following advantages

Less powerful hardware required

Easier to address bias

Faster training & inference

Easier debugging

But there is one big problem: How do I manage the training of all of these models?

A Manage training pipelines

C The solution? Apache Beam!

- Apache Beam can handle streaming and batch data
- Apache Beam can easily *prepare data* for training
- Apache Beam can run on different *runners* depending on the model's *requirements*
- *Abstraction* in ML libraries allows us to train models with few lines of code

Let's look at an example of a per entity training pipeline

Age	Workclass	Education	Marital Status	Occupation	Relationship	Race	Sex	Hours per Week	Native Country	Compensation
25	Private	11th	Never-married	Machine-op-inspct	Own-child	Black	Male	40	USA	<=50K.
38	Private	HS-grad	Married-civ-spouse	Farming-fishing	Husband	White	Male	50	USA	<=50K.
28	Local-gov	Assoc-acdm	Married-civ-spouse	Protective-serv	Husband	White	Male	40	USA	>50K.
44	Private	Some-college	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	40	USA	>50K.
18	?	Some-college	Never-married	?	Own-child	White	Female	30	USA	<=50K.

Q Pipeline overview

0)

\bigcirc Split data per education level

			1	29y	 Accountant	Bachelor
	1	I	1 1	54y	 Plumber	Bachelor
Age	 Occupation	Education		22y	 Cashier	Bachelor
29y	 Accountant	Bachelor			 	
31y	 Engineer	Master	\mathbf{H}			
54y	 Plumber	Bachelor		31y	 Engineer	Master
37y	 Server	High School			 	
47y	 Barista	High School				
22y	 Cashier	Bachelor		37y	 Server	High School
				47v	Barista	High School

...

...

...

...

with beam.Pipeline(options=pipeline_options) as pipeline:

```
_ = (
    pipeline | "Read Data" >> beam.io.ReadFromText(known_args.input)
    | "Split data to make List" >> beam.Map(lambda x: x.split(','))
    | "Filter rows" >> beam.Filter(custom_filter)
    | "Create Key" >> beam.ParDo(CreateKey())
    | "Group by education" >> beam.GroupByKey()
    | "Prepare Data" >> beam.ParDo(PrepareDataforTraining())
    | "Train Model" >> beam.ParDo(TrainModel())
    | "Save" >> fileio.WriteToFiles(path=known_args.output,
    sink=ModelSink()))
```


def custom_filter(element):
 return len(element) == 15 and '?' not in element \
 and ' Bachelors' in element or ' Masters' in element \
 or ' Doctorate' in element

```
class PrepareDataforTraining(beam.DoFn):
    def process(self, element, *args, **kwargs):
        key, values = element
    #Convert to dataframe
```

```
df = pd.DataFrame(values)
last_ix = len(df.columns) - 1
X, y = df.drop(last_ix, axis=1), df[last_ix]
```

```
# select categorical and numerical features
cat_ix = X.select_dtypes(include=['object', 'bool']).columns
num_ix = X.select_dtypes(include=['int64', 'float64']).columns
```

```
# label encode the target variable to have the classes 0 and 1
y = LabelEncoder().fit_transform(y)
```

```
yield (X, y, cat_ix, num_ix, key)
```


class TrainModel(beam.DoFn):

```
# one hot encode categorical, normalize numerical
ct = ColumnTransformer(steps)
```

```
# wrap the model in a pipeline
pipeline = Pipeline(steps=[('t', ct), ('m', DecisionTreeClassifier())])
pipeline.fit(X, y)
```

```
yield (key, pipeline)
```



```
class ModelSink(fileio.FileSink):
    def open(self, fh):
        self._fh = fh
```

```
def write(self, record):
    _, trained_model = record
    pickled_model = pickle.dumps(trained_model)
    self._fh.write(pickled_model)
```

```
def flush(self):
    self._fh.flush()
```

Q Extending the pipeline


```
class EvaluateModel(beam.DoFn):
  def __init__(self, model_uri):
   file = FileSystems.open(model_uri, 'rb')
    self.model = pickle.load(file)
  def process(self, element, *args, **kwargs):
    inputs, labels = element
    predictions = self.model.predict(inputs)
    accuracy = sklearn.metrics.accuracy_score(y_pred=predictions,
y_true=labels)
   f1 = sklearn.metrics.f1_score(y_pred=predictions, y_true=labels)
    recall = sklearn.metrics.recall_score(y_pred=predictions, y_true=labels)
   file = FileSystems.open(f'model_uri_metrics', 'web')
```

```
file.writelines([f'accuracy: {accuracy}', f'f1: {f1}', f'recall:
{recall}'])
```

igsquare How does this pipeline fit in the MLOps architecture? \Im

Let's try out our model using the RunInference trasform

Q Bonus: Inference in Apache Beam

0

#
Q Summary

- Apache Beam is more and more becoming technology that can be used in advanced MLOps setups
- Per entity strategy has several advantages
 - Requires less powerful hardware
 - Faster training and inference
 - Easier to address bias
 - Easier to debug
- Apache Beam a perfect candidate for per entity training pipelines thanks to
 - Excellent for data preprocessing and preparation
 - Different runners depending on model requirements
 - \circ $\;$ Abstraction in ML libraries that make it easy to train a model

Jasper Van den Bossche

QUESTIONS?

https://www.linkedin.com/in/jasper-van-den-bossche/ https://github.com/jaxpr https://www.ml6.eu/

BEAM SUMMIT

How many ways can you skin a cat, if the cat is a problem that needs an ML model to solve?

Kerry Donny-Clark

BEAM SUMMIT

Write your own model handler for RunInference!

Ritesh Ghorse

BEAM SUMMIT

Power Realtime Machine Learning Feature Engineering with Managed Beam at LinkedIn

> David Shao & Yanan Hao

BEAM SUMMIT

Optimizing Machine Learning Workloads on Dataflow

Alex Chan

BEAM SUMMIT

ML model updates with side inputs in Dataflow streaming pipelines

Anand Inguva

BEAM SUMMIT

Use Apache Beam to build Machine Learning Feature System at Affirm

Hao Xu

Use Apache Beam To Build Machine Learning Feature System At Affirm

- Hao Xu

ABOUT ME

Earnest -> Fast -> Affirm -> JP Morgan & Chase

TABLE OF CONTENTS

01 BACKGROUND

- MLFS
- Stream Platform

03

SOLUTION

- Unified transformation
- OOTB APIs

02

PAIN POINTS

- Slowness
- Learning curves

04 OUTCOME

- Performance
- Dev Velocity

Background

- BNPL
- Machine learning feature store
- Streaming and Batch Compute Platform

The Story of BNPL

The Story of BNPL

If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the issue? Should we approve another loan for them?

Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days. Utilizing stream data can help prevent such delays in the future.

Feature Store

Figure 1. A feature store is the interface between feature engineering and model development.

Pain Points

Pain Points

Development Velocity

Slow backfilling of stream features. Excessive code required to define a feature.

Variety

Inability to join two streams from Kinesis together, which is typically required for stateful processing.

Visibility

Lack of registry to quickly lookup data sources, features and metadata.

Solution

MLFS Architecture

Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time

Unified Transformation Interface

class UnifiedTransformer(Transformer[beam.PCollection, beam.PCollection]):

```
@propertv
def window(self) -> beam.WindowInto:
    return self. window
@property
def event transform(self) -> beam.PTransform:
    return self. event transform
@property
def aggregator(self) -> beam.PTransform:
    return self. aggregator
def run(self, inputs: beam.PCollection) -> beam.PCollection:
    if self.feast context.runner == Runner.flink:
        if self.window:
            inputs = inputs | self.window
        return (
            inputs
            | self.event transform.with output types(Tuple)
            | self.aggregator.with output types(Tuple)
    elif self.feast context.runner == Runner.spark:
        return (
            inputs
            | self.event transform.with output types(Tuple)
            | self.aggregator.with output types (Tuple)
```

else:

raise ValueError("Unsupported runner: {}.".format(self.feast context.runner))

Unified Transformation Interface

```
@stream feature view(
   entities=[entity registry['user ari']],
   ttl=timedelta(days=0),
   schema=[
       Field(name="user ari", dtype=String),
       Field(name="timestamp", dtype=UnixTimestamp),
       Field(name="latest payment fail", dtype=UnixTimestamp),
       Field (name="latest payment fail ach nsf", dtype=UnixTimestamp),
   1,
   online=True,
   source=user payment fails stream source,
   timestamp field="timestamp",
   tags={},
  mode="flink",
def user last payment fail (feast context: FeastContext, inputs: PCollection) -> PCollection:
   transformer = UnifiedTransformer(
       feast context=feast context,
       aggregator=LatestFeatureAggregator(feast context, 'timestamp'),
       event transform=extract payment fail data,
```

return transformer.run(inputs)

Outcome

Performance boost

Future improvement

- 1. OOTB transformation interface
- 2. Transformation framework
- 3. Improvement on Beam Spark Runner

