
NYC 2023

Shubham Krishna
ML Engineer, ML6

Apache Beam and Ensemble 
Modeling: A Winning Combination 

for Machine Learning

4

https://www.ml6.eu/


BEAM SUMMIT NYC 2023# 
5

Machine Learning services 
company.

We help our clients build 
machine learning applications 
using technologies such as 
Apache Beam.

Who is ML6?
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Agenda

● Motivation
○ Ensemble Modeling for solving complex use-cases

● Solution 
○ Beam RunInference:

■ Seamless integration of ML in a Beam pipeline for semantic enrichment
■ Use multiple Runinference transforms for pipelines with multiple ML 

models
● Example
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Motivation

● Semantic Enrichment: ML models provide semantic information.

 

● Business needs often involve the use of multiple machine 
learning models, each addressing a specific subtask and 
contributing unique capabilities. 
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Semantic Enrichment of Data

● Categorise: Add specific label
● Summarize
● Sentiment Analysis
● Translate
● Extract important keywords
● Image Annotation
● Image Captioning
● Speech Recognition
● …..
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Ensemble Modeling
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Fig.1. Example of a Multi model pipeline, taken from a tutorial on 
RunInference on Dataflow: Link

https://cloud.google.com/blog/products/data-analytics/influsing-ml-models-into-production-pipelines-with-dataflow
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Ensemble Modeling: Sequential vs A/B
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Sequential Pattern

A/B Pattern
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Problem Solution

Seamlessly integrate ML models 
in a Beam pipeline for semantic 
enrichment of data.

RunInference API = Inference 
with ML model in batch and 
streaming pipelines, without 
needing lots of boilerplate code.

Business needs require 
combining multiple ML models. 
(Ensemble Modeling)

RunInference API = Using 
multiple RunInference 
transforms, build a pipeline that 
consists of multiple ML models.
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RunInference >> Custom DoFn

Seamlessly integrate ML model 
in a Beam pipeline for semantic 
enrichment of data.

13



BEAM SUMMIT NYC 2023#

RunInference supports popular ML frameworks
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How to use RunInference ?
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ModelHandlers
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KeyedModelHandler
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Example

Image captioning and ranking 
with Sequential Pattern:

1. BLIP: Image Captioning 
2. CLIP: Ranking captions
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BLIP: Image Captioning CLIP: Caption Ranking
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ML Inference Pipeline in Beam as a DAG
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[URLs]
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ML Inference Pipeline in Beam as a DAG
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Read Images from URLs
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(Img URL, Image)

[URLs]
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Preprocess Inputs for BLIP
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(Img URL, torch.Tensor)
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Inference using BLIP
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Inference using BLIP
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PostProcess BLIP Output

26



BEAM SUMMIT NYC 2023# 

Grouping Image and BLIP Output 
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Preprocess Inputs for CLIP
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Inference using CLIP
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PostProcess CLIP Output
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Printing the results nicely
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Takeaways

● RunInference transform eliminates the need for extensive 
boilerplate code in pipelines with machine learning models.

● Multiple RunInference transforms enable complex pipelines with 
minimal code for multi-ML models.

● Example pipeline can be used for captioning images for 
finetuning Stable Diffusion. 
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Code and Tutorial Link
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Code: GitHub Link

Tutorial: Apache Beam Documentation Link

Slides: GitHub Link

https://github.com/shub-kris/Beam-Summit-2023/blob/main/ensemble-modeling/Apache_Beam_and_Ensemble_Modeling.ipynb
https://beam.apache.org/documentation/ml/multi-model-pipelines/
https://beam.apache.org/documentation/ml/tensorrt-runinference/
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About ML6

We are a group of AI and 
machine learning experts 
building custom AI solutions.

Amongst our engineers we 
have several Apache Beam 
contributors.
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Agenda

● Development of ML applications
○ What is training?
○ What is MLOps?

● What does per entity training mean?
○ Training multiple models rather than a single model?
○ Why use a per entity strategy

● Example per entity training pipeline
● Bonus: Using trained models in a RunInference pipeline



BEAM SUMMIT NYC 2023#

What is machine learning model 
training?
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What is machine learning model training?

Writing logic to detect the Beam macot is almost impossible
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What is training a machine learning model?
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What is training a machine learning model?
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How are machine learning 
applications built and deployed?
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MLOps: Level 0
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MLOps: Level 1
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MLOps: Level 2
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What is per entity training?
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Example: Building multilingual chatbot

Guten Tag! 안녕하세
요!

Bonjour!



BEAM SUMMIT NYC 2023#  

What is per entity training?
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Example: Detect production defects using sensor data
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Example: Detect production defects using sensor data
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Why use a per entity strategy?
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 Reduce Model Infrastructure Requirements
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Faster training & inference
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Address fairness and bias
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Easier to detect problems
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Simpler models have the following advantages

Faster training & inference Easier debugging

Easier to address biasLess powerful hardware required
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But there is one big problem:
How do I manage the training of 
all of these models?
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Manage training pipelines
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The solution? Apache Beam!

- Apache Beam can handle 
streaming and batch data

- Apache Beam can easily 
prepare data for training

- Apache Beam can run on 
different runners depending on 
the model’s requirements

- Abstraction in ML libraries 
allows us to train models with 
few lines of code
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Let’s look at an example of a 
per entity training pipeline
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Predicting incomes per education level

Age Workclass Education Marital Status Occupation Relationship Race Sex
Hours per 

Week
Native 

Country Compensation

25 Private 11th Never-married Machine-op-inspct Own-child Black Male 40 USA <=50K.

38 Private HS-grad Married-civ-spouse Farming-fishing Husband White Male 50 USA <=50K.

28 Local-gov Assoc-acdm Married-civ-spouse Protective-serv Husband White Male 40 USA >50K.

44 Private Some-college Married-civ-spouse Machine-op-inspct Husband Black Male 40 USA >50K.
18 ? Some-college Never-married ? Own-child White Female 30 USA <=50K.
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Pipeline overview
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Split data per education level
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Train model per dataset
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Pipeline overview
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Step 1: Data preparation
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Step 1: Data preparation
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Step 2: Training the models
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Step 3: Saving models
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Extending the pipeline
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Extending pipeline with metrics
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How does this pipeline fit in the MLOps architecture?
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Let’s try out our model using the 
RunInference trasform
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Bonus: Inference in Apache Beam
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Summary

● Apache Beam is more and more becoming technology that can 
be used in advanced MLOps setups

● Per entity strategy has several advantages
○ Requires less powerful hardware
○ Faster training and inference
○ Easier to address bias
○ Easier to debug

● Apache Beam a perfect candidate for per entity training 
pipelines thanks to

○ Excellent for data preprocessing and preparation
○ Different runners depending on model requirements
○ Abstraction in ML libraries that make it easy to train a model
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QUESTIONS?

https://www.linkedin.com/in/jasper-van-den-bossche/
https://github.com/jaxpr

https://www.ml6.eu/

Jasper Van den Bossche
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Kerry Donny-Clark

How many ways can you 
skin a cat, if the cat is a 

problem that needs an ML 
model to solve?
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Write your own model 
handler for RunInference!





NYC 2023

David Shao 
& Yanan Hao

Power Realtime Machine 
Learning Feature 

Engineering with Managed 
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Alex Chan

Optimizing Machine 
Learning Workloads on 

Dataflow
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Anand Inguva

ML model updates with 
side inputs in Dataflow 

streaming pipelines
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Use Apache Beam to build 
Machine Learning Feature 

System at Affirm



Use Apache Beam To Build 
Machine Learning Feature 
System At Affirm

- Hao Xu



ABOUT ME
Earnest -> Fast -> Affirm -> JP Morgan & Chase
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Background
● BNPL
● Machine learning feature store
● Streaming and Batch Compute Platform



The Story of BNPL



The Story of BNPL

04-15

Third payment

05-15

Forth payment

02-15

First payment

03-15

Second Payment

If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the 
issue? Should we approve another loan for them?



Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days. 
Utilizing stream data can help prevent such delays in the future.



Feature Store

Figure 1. A feature store is the interface between feature engineering and model development.



Pain Points



Pain Points

Development Velocity
Slow backfilling of stream features.
Excessive code required to define a feature.

Inability to join two streams from Kinesis 
together, which is typically required for 
stateful processing.

Lack of registry to quickly lookup data 
sources, features and metadata.

Variety

Visibility



Solution



MLFS Architecture



Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time



Unified Transformation Interface
class UnifiedTransformer(Transformer[beam.PCollection, beam.PCollection]):
       
   @property
   def window(self) -> beam.WindowInto:
       return self._window

   @property
   def event_transform(self) -> beam.PTransform:
       return self._event_transform

   @property
   def aggregator(self) -> beam.PTransform:
       return self._aggregator

   def run(self, inputs: beam.PCollection) -> beam.PCollection:
       if self.feast_context.runner == Runner.flink:
           if self.window:
               inputs = inputs | self.window
           return (
               inputs
               | self.event_transform.with_output_types(Tuple)
               | self.aggregator.with_output_types(Tuple)
           )
       elif self.feast_context.runner == Runner.spark:
           return (
               inputs
               | self.event_transform.with_output_types(Tuple)
               | self.aggregator.with_output_types(Tuple)
           )
       else:
           raise ValueError("Unsupported runner: {}.".format(self.feast_context.runner))



Unified Transformation Interface

@stream_feature_view(
   entities=[entity_registry['user_ari']],
   ttl=timedelta(days=0),
   schema=[
       Field(name="user_ari", dtype=String),
       Field(name="timestamp", dtype=UnixTimestamp),
       Field(name="latest_payment_fail", dtype=UnixTimestamp),
       Field(name="latest_payment_fail_ach_nsf", dtype=UnixTimestamp),
   ],
   online=True,
   source=user_payment_fails_stream_source,
   timestamp_field="timestamp",
   tags={},
   mode="flink",
)
def user_last_payment_fail(feast_context: FeastContext, inputs: PCollection) -> PCollection:
   transformer = UnifiedTransformer(
       feast_context=feast_context,
       aggregator=LatestFeatureAggregator(feast_context, 'timestamp'),
       event_transform=extract_payment_fail_data,
   )
   return transformer.run(inputs)



Outcome



Performance boost

The time spent to backfill features for feature 
time_since_user_checkout and 

tiem_since_user_last_payment_failure

Backfilling time 
improved by 80%

Backfilling time
80%

Reduced 100+ lines to 
20+ lines

Code lines
60%

200+ data sources
100+ features

Registry
40%



Future improvement
1. OOTB transformation interface
2. Transformation framework
3. Improvement on Beam Spark Runner




