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The Problem



Two Streams Need to be Joined



The “Core” one with the core info

{
  "id": 123,
  "color": "gold",
  "can_dance": true
}



The Second one with “Lookups”

{
  "id": 123,
  "serial_number": 456
}



Two Streams Need to be Joined

{
  "id": 123,
  "color": "gold",
  "can_dance": true
}

{
  "id": 123,
  "current_serial": 456
}



Enriching Streaming Data



Enriching Streaming Data
(Slowly) updating side inputs



Enriching Streaming Data
(Batched) RPC calls



Is there another way?



State & Timers



Implementation details



Message Queues

Google 
Pub/Sub



1. Preload the Lookup Topic

Pub/Sub
Topic Lookups

(Shell) Script

BigQuery



2. Start the Beam Pipeline

(Shell) Script BigQuery

LookupsCore



The Beam Pipeline



The Beam Pipeline
Core Lookup

Output

MapToCore MapToLookup

Flatten

StatefulDoFn



The StatefulDoFn

StatefulDoFn

@ProcessElement

Core
State

buffer

count

@OnTimer

Callback when the timer 
has expired Timer (30s) 

Lookup
State

buffer

count

The input needs to be a 
PCollection of KV

GC-Timer (30d)



The StatefulDoFn (2)
class StatefulJoinFn(beam.DoFn):
 BUFFER_TIMER = TimerSpec('expiry', TimeDomain.WATERMARK)
 GC_TIMER = TimerSpec('gc_timer', TimeDomain.WATERMARK)

 CORE_BUFFER_BAG = BagStateSpec('core', coders.registry.get_coder(CoreType))
 CORE_COUNT_STATE = CombiningValueStateSpec('count_core', combine_fn=sum)
 LOOKUP_BUFFER_BAG = BagStateSpec('lookup', coders.registry.get_coder(LookupType))
 LOOKUP_COUNT_STATE = CombiningValueStateSpec('count_lookup', combine_fn=sum)

 def __init__(self):
   self.time_seconds = 30

 def process(
     self,
     input_element: Union[Tuple[str, CoreType], Tuple[str, LookupType]],
     element_timestamp=beam.DoFn.TimestampParam,
     core_count_state=beam.DoFn.StateParam(CORE_COUNT_STATE),
     core_state=beam.DoFn.StateParam(CORE_BUFFER_BAG),
     lookup_count_state=beam.DoFn.StateParam(LOOKUP_COUNT_STATE),
     lookup_state=beam.DoFn.StateParam(LOOKUP_BUFFER_BAG),
     timer=beam.DoFn.TimerParam(BUFFER_TIMER),
     gc_timer=beam.DoFn.TimerParam(GC_TIMER),
 ): [...]



Don’t miss out!

Talk: “Design considerations to operate a stateful streaming 
pipeline as a service” 
on Wednesday from 12:30-12:55 in Palisades 
with Bhupinder and Israel!

Workshop: “Complex Event Processing With State & Timers” 
on Thursday from 10:45-12:15 in Palisades 
with Miren and Israel!



Thank you ❤
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github.com/tkaymak/beam_summit_2023_talk
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Agenda

● HBase and BigTable Overview

● HBase Snapshot Storage Structure

● Import Snapshots Pipeline

● Challenges & Resolutions
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● Open Source Distributed Scalable Big 
Data Store

● Random read/write access patterns 

● Automatic sharding of tables across 
regions

● Server side processing using 
Coprocessors

              HBase         Bigtable

● Fully managed by Google

● High availability and automatic 
replication

● Auto Scaling based on application 
traffic

● Enterprise grade security and 
control



BEAM SUMMIT NYC 2023# 

● Representation of table at point in time 

● Zero Data Copying

● Minimal impact on region servers

● Creating Snapshot

● Export Snapshot to Google Cloud Storage

Hbase Snapshots

hbase> snapshot ‘tableName’, ‘snapshotName’

hbase> hbase \ 
org.apache.hadoop.hbase.snapshot.ExportSnapshot \  
-snapshot $SNAPSHOT_NAME \
-copy-to  $BUCKET_NAME$SNAPSHOT_EXPORT_PATH/data \ 
-mappers  $NUM_MAPPERS
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Hbase Storage Structure

*  Region represents a key range (startKey - endKey) and may live on a different region server

*  Store Files are also known as Hfiles
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❖ Build Snapshot Config

❖ Read Snapshot (HadoopFormatIO)

❖ Create Mutation

❖ Write to Bigtable

Importing to BigTable (v1)

*  Pipeline Source

https://github.com/googleapis/java-bigtable-hbase/blob/main/bigtable-dataflow-parent/bigtable-beam-import/src/main/java/com/google/cloud/bigtable/beam/hbasesnapshots/ImportJobFromHbaseSnapshot.java
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Challenges

❖ Skewed regions 

❖ Single Table Snapshots
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Importing to BigTable (v2)

❖ Read multiple Snapshot Configs

❖ List Regions

❖ Read Region Splits (in parallel)

❖ Create mutation

❖ Write to multiple tables in Bigtable 

*  Snapshot config provides snapshot name, source path and target table name
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Splittable Dofn

❖ Powerful abstraction with support to split each element of work

(element, restriction) -> (element,restriction_1) + (element, restriction_2)

❖ Dynamic rebalancing to avoid stragglers
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Splittable Dofn

❖ Restriction represents a portion of work (e.g: OffsetRange, ByteKeyRange)

❖ Similar Syntax as DoFn with an additional RestrictionTracker parameter to 
@ProcessElement method

❖ @GetInitialRestriction - Represents the complete work for a given element

❖ @SplitRestriction (Optional) - Supports pre-splitting initial restriction
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Execution of Splittable Dofn
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Splittable Dofn
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Splittable Dofn
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Splittable Dofn
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Dynamic Splitting

❖ Splits current processing element into primary and residual parts

❖ Runners schedules residual part onto another instance
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Dynamic Splitting
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Pipeline Graph
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Benchmark Tests

❖ Snapshot  Datasets

➢ 104 GB with 19 regions (6 regions of 3.5 GB in size and remaining 13 regions are approximately 7 GB)

➢ 875 GB with 14 regions (Mixed region sizes varying from 30GB to 98 GB)

❖ Enabled and Disabled Dynamic Splitting 

❖ 10 - 30% improvements in Job Duration with reduced VCPU Consumption 

 * Beyond Initial splits enabling further splitting didn’t yield significant differences
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QUESTIONS?
@prathapreddy017

https://github.com/prathapreddy123

https://www.linkedin.com/in/prathapparvathareddy

Prathap Reddy

https://github.com/prathapreddy123
https://www.linkedin.com/in/prathapparvathareddy
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