

NYC 2023

Israel Herraiz

Dealing with order in
streams using Apache Beam

NYC 2023

Svetak Sundhar

Getting started with
Apache Beam Quest

NYC 2023

By Tobi Kaymak
& Israel Herraiz

Too Big to Fail -
A Pattern for Enriching a

Stream using State and Timers

NYC 2023

By Tobi Kaymak
& Israel Herraiz

Enrich me, if you can -
A Pattern for Enriching a

Stream using State and Timers

The Problem

Two Streams Need to be Joined

The “Core” one with the core info

{
 "id": 123,
 "color": "gold",
 "can_dance": true
}

The Second one with “Lookups”

{
 "id": 123,
 "serial_number": 456
}

Two Streams Need to be Joined

{
 "id": 123,
 "color": "gold",
 "can_dance": true
}

{
 "id": 123,
 "current_serial": 456
}

Enriching Streaming Data

Enriching Streaming Data
(Slowly) updating side inputs

Enriching Streaming Data
(Batched) RPC calls

Is there another way?

State & Timers

Implementation details

Message Queues

Google
Pub/Sub

1. Preload the Lookup Topic

Pub/Sub
Topic Lookups

(Shell) Script

BigQuery

2. Start the Beam Pipeline

(Shell) Script BigQuery

LookupsCore

The Beam Pipeline

The Beam Pipeline
Core Lookup

Output

MapToCore MapToLookup

Flatten

StatefulDoFn

The StatefulDoFn

StatefulDoFn

@ProcessElement

Core
State

buffer

count

@OnTimer

Callback when the timer
has expired Timer (30s)

Lookup
State

buffer

count

The input needs to be a
PCollection of KV

GC-Timer (30d)

The StatefulDoFn (2)
class StatefulJoinFn(beam.DoFn):
 BUFFER_TIMER = TimerSpec('expiry', TimeDomain.WATERMARK)
 GC_TIMER = TimerSpec('gc_timer', TimeDomain.WATERMARK)

 CORE_BUFFER_BAG = BagStateSpec('core', coders.registry.get_coder(CoreType))
 CORE_COUNT_STATE = CombiningValueStateSpec('count_core', combine_fn=sum)
 LOOKUP_BUFFER_BAG = BagStateSpec('lookup', coders.registry.get_coder(LookupType))
 LOOKUP_COUNT_STATE = CombiningValueStateSpec('count_lookup', combine_fn=sum)

 def __init__(self):
 self.time_seconds = 30

 def process(
 self,
 input_element: Union[Tuple[str, CoreType], Tuple[str, LookupType]],
 element_timestamp=beam.DoFn.TimestampParam,
 core_count_state=beam.DoFn.StateParam(CORE_COUNT_STATE),
 core_state=beam.DoFn.StateParam(CORE_BUFFER_BAG),
 lookup_count_state=beam.DoFn.StateParam(LOOKUP_COUNT_STATE),
 lookup_state=beam.DoFn.StateParam(LOOKUP_BUFFER_BAG),
 timer=beam.DoFn.TimerParam(BUFFER_TIMER),
 gc_timer=beam.DoFn.TimerParam(GC_TIMER),
): [...]

Don’t miss out!

Talk: “Design considerations to operate a stateful streaming
pipeline as a service”
on Wednesday from 12:30-12:55 in Palisades
with Bhupinder and Israel!

Workshop: “Complex Event Processing With State & Timers”
on Thursday from 10:45-12:15 in Palisades
with Miren and Israel!

Thank you ❤

28

References
● Prathap Reddy - Cache reuse across DoFn’s in Beam:

https://medium.com/google-cloud/cache-reuse-across-dofns-in-beam-a34a926db848
● Chirag Shankar - Stateful Processing In Apache Beam/Cloud Dataflow:

https://medium.com/google-cloud/stateful-processing-in-apache-beam-cloud-dataflow-109d1880f76a
● Iñigo San Jose - Dataflow Cookbook:

https://cloud.google.com/blog/products/data-analytics/introducing-dataflow-cookbook
● Kenneth Knowles - Timely (and Stateful) Processing with Apache Beam:

https://beam.apache.org/blog/timely-processing/

(CC-BY) Files by Plastic Donut from the Noun Project https://thenounproject.com/search/?q=batch&i=722276
This presentation has been designed using images from Flaticon.com
(CC 3.0 BY) Icons made by phatplus from https://www.flaticon.com/authors/phatplus
(CC 3.0 BY) Icons made by iconixar from https://www.flaticon.com/authors/iconixar
(CC 3.0 BY) Icons made by Those Icons from https://www.flaticon.com/authors/those-icons
(CC 3.0 BY) Icons made by Smashicons from https://www.flaticon.com/authors/smashicons
(CC 3.0 BY) Icons made by photo3idea_studio from https://www.flaticon.com/free-icon/fire_3163799
(CC 3.0 BY) Icons made by Icons made by Eucalyp from https://www.flaticon.com/free-icon/confidential_2857573
(CC 3.0 BY) Icons made by smalllikeart from https://www.flaticon.com/authors/smalllikeart

https://medium.com/google-cloud/cache-reuse-across-dofns-in-beam-a34a926db848
https://medium.com/google-cloud/stateful-processing-in-apache-beam-cloud-dataflow-109d1880f76a
https://cloud.google.com/blog/products/data-analytics/introducing-dataflow-cookbook
https://beam.apache.org/blog/timely-processing/
https://thenounproject.com/search/?q=batch&i=722276
https://www.flaticon.com/authors/phatplus
https://www.flaticon.com/authors/iconixar
https://www.flaticon.com/authors/those-icons
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/free-icon/fire_3163799
https://www.flaticon.com/free-icon/confidential_2857573
https://www.flaticon.com/authors/smalllikeart

Do you have a
Question for
us? Israel Herraiz

ihr@google.com

Tobi Kaymak
kaymak@google.com

github.com/tkaymak/beam_summit_2023_talk

NYC 2023

Javier Ramirez

Deduplicating and analysing
time-series data with Apache

Beam & QuestDB

NYC 2023

Israel Herraiz
& Bhupinder Sindhwani

Design considerations to
operate a stateful streaming

pipeline as a service

NYC 2023

Prathap Reddy
Google

Parallelizing
Skewed Hbase Regions
using Splittable Dofn

BEAM SUMMIT NYC 2023#

Agenda

● HBase and BigTable Overview

● HBase Snapshot Storage Structure

● Import Snapshots Pipeline

● Challenges & Resolutions

BEAM SUMMIT NYC 2023#

● Open Source Distributed Scalable Big
Data Store

● Random read/write access patterns

● Automatic sharding of tables across
regions

● Server side processing using
Coprocessors

 HBase Bigtable

● Fully managed by Google

● High availability and automatic
replication

● Auto Scaling based on application
traffic

● Enterprise grade security and
control

BEAM SUMMIT NYC 2023#

● Representation of table at point in time

● Zero Data Copying

● Minimal impact on region servers

● Creating Snapshot

● Export Snapshot to Google Cloud Storage

Hbase Snapshots

hbase> snapshot ‘tableName’, ‘snapshotName’

hbase> hbase \
org.apache.hadoop.hbase.snapshot.ExportSnapshot \
-snapshot $SNAPSHOT_NAME \
-copy-to $BUCKET_NAME$SNAPSHOT_EXPORT_PATH/data \
-mappers $NUM_MAPPERS

BEAM SUMMIT NYC 2023#

Hbase Storage Structure

* Region represents a key range (startKey - endKey) and may live on a different region server

* Store Files are also known as Hfiles

BEAM SUMMIT NYC 2023#

❖ Build Snapshot Config

❖ Read Snapshot (HadoopFormatIO)

❖ Create Mutation

❖ Write to Bigtable

Importing to BigTable (v1)

* Pipeline Source

https://github.com/googleapis/java-bigtable-hbase/blob/main/bigtable-dataflow-parent/bigtable-beam-import/src/main/java/com/google/cloud/bigtable/beam/hbasesnapshots/ImportJobFromHbaseSnapshot.java

BEAM SUMMIT NYC 2023#

Challenges

❖ Skewed regions

❖ Single Table Snapshots

BEAM SUMMIT NYC 2023#

Importing to BigTable (v2)

❖ Read multiple Snapshot Configs

❖ List Regions

❖ Read Region Splits (in parallel)

❖ Create mutation

❖ Write to multiple tables in Bigtable

* Snapshot config provides snapshot name, source path and target table name

BEAM SUMMIT NYC 2023#

Splittable Dofn

❖ Powerful abstraction with support to split each element of work

(element, restriction) -> (element,restriction_1) + (element, restriction_2)

❖ Dynamic rebalancing to avoid stragglers

BEAM SUMMIT NYC 2023#

Splittable Dofn

❖ Restriction represents a portion of work (e.g: OffsetRange, ByteKeyRange)

❖ Similar Syntax as DoFn with an additional RestrictionTracker parameter to
@ProcessElement method

❖ @GetInitialRestriction - Represents the complete work for a given element

❖ @SplitRestriction (Optional) - Supports pre-splitting initial restriction

BEAM SUMMIT NYC 2023#

Execution of Splittable Dofn

BEAM SUMMIT NYC 2023#

Splittable Dofn

BEAM SUMMIT NYC 2023#

Splittable Dofn

BEAM SUMMIT NYC 2023#

Splittable Dofn

BEAM SUMMIT NYC 2023#

Dynamic Splitting

❖ Splits current processing element into primary and residual parts

❖ Runners schedules residual part onto another instance

BEAM SUMMIT NYC 2023#

Dynamic Splitting

BEAM SUMMIT NYC 2023#

Pipeline Graph

BEAM SUMMIT NYC 2023#

Benchmark Tests

❖ Snapshot Datasets

➢ 104 GB with 19 regions (6 regions of 3.5 GB in size and remaining 13 regions are approximately 7 GB)

➢ 875 GB with 14 regions (Mixed region sizes varying from 30GB to 98 GB)

❖ Enabled and Disabled Dynamic Splitting

❖ 10 - 30% improvements in Job Duration with reduced VCPU Consumption

 * Beyond Initial splits enabling further splitting didn’t yield significant differences

NYC 2023

QUESTIONS?
@prathapreddy017

https://github.com/prathapreddy123

https://www.linkedin.com/in/prathapparvathareddy

Prathap Reddy

https://github.com/prathapreddy123
https://www.linkedin.com/in/prathapparvathareddy

NYC 2023

Amruta Deshmukh

Case study:
Using statefulDofns to

process late arriving data

NYC 2023

Mazlum Tosun

CI CD for Dataflow with Flex
Templates and Cloud Build

NYC 2023

Apache Beam Community

The Future of the Apache
Beam Community

