How to balance power ano

control when using
Dataflow with an OLTP SQL

Database ?

By Florian Bastin
& Léo Babonnaud

About us

Florian Bastin Léo Babonnaud
Data scientist @Octo Data engineer @Octo

%

S U

<

| T NYC2023

The Use Case

e A Retail Customer use case
e Products information pipeline to serve a search engine index

Requirements.txt

e Dependency between file
rows

e No order in files reception

e Random time interval
between files reception

e Most updated data in the
search engine

e File B may never arrive

I
=[>

File A depends
on data in File B

{‘product": 'coke',

‘price’: $1}
t1
5
Database
[File B H H DoFn Eﬁ;rsz
Index
{‘product.': ‘coke’, {'product": 'coke",
@ 'quantity”: 1} 'quantity": 1

'price': $5
= price': $5}

Database

with File A
info

What kind of storage ?

e BigQuery storage, as an OLAP
database is used for large storage
and fast analytics request

e Cloud SQL is a transactional
database good for fast
interactions and modifications at
the row level.

OLAP interactions

]
XK

Dataflow

3 BigQuery

OLTP interactions

>R,
e <

Dataflow ‘

3

Our Architecture

Streaming pipeline
Near real time
Mini batches

CRUD operations
- B

{price": 3} o
; : @ algolia ==
JSON I I —. . .— Q @ —
f ~ \ /'\ oo ; —_
rj I o ® {product': '‘coke'} — = N
Dataflow Algolia Search == 0 (S
e Pub Sub 9 = ikbu

\ Storage Engine

An I/O Cloud SQL
connector ?

e

{product’: 'coke'}

PBegin J———)[.

=

Question

SELECT price
FROM price_table
WHERE product = 'coke'

{‘product': 'coke',
'price': $1}

Answer

{'price':1}

class apache_beam.io.jdbc.ReadFromJdbc(driver class_name, jdbc_url, username, password, query,
output_parallelization=None, fetch_size=None, connection_properties=None, connection_init_sqls=None,

expansion_service=None)

[source] %

class apache_beam.io.jdbc.WriteToJdbc(driver class name, jdbc_url, username, password, statement,
connection_properties=None, connection_init_sqls=None, expansion_service=None)

4

Il

S U T

[source]

Developing our own
connectors:
No easy way

Connector type

Pool / Connections control
Failed worker retry
Dataflow autoscaling
ldempotency

How to develop your own I/O connectors
using ParDo & GroupByKey operators?

I
=[>

(7]
c

The Cloud Sqgl connector

from google.cloud.sql.connector import Connector

The Cloud SQL Python Connector provides the following benefits: import sqlalchemy

initialize Connector object
. . connector = Connector()
e Uses IAM permissions to control who/what can connect to A ,
function to return the database connection
def getconn() —> pymysql.connections.Connection:

your Cloud SQL instances R s R
e Improved Security between the client connector and the 313§eg§_ezolte

server-side proxy. 3:25;‘325:1:;;2.%“”“""'
e Removes the requirement to use and distribute SSL (T

certificates, as well as manage firewalls or source/destination NS b i

IP addresses. e

)

—>» DoFn.setup() : Called whenever the DoFn instance is deserialized on the worker. This means it can be called more than once per worker because multiple
instances of a given DoFn subclass may be created (e.g., due to parallelization, or due to garbage collection after a period of disuse). This is a good place to
connect to database instances, open network connections or other resources.

a

Il

S U T

The Limit of the Cloud SQL Connector

Autoscaling @

o
T 1
UTC+2 4:41:00PM 4:41:30PM 4:42.00PM 4:42.30PM 4:43:.00PM 4:43:30PM 4:44:00PM 4:44:30PM 4:45:00PM 4:45:30PM 4:46:.00PM 4:46:30PM 4:47:00PM 4:47:30PM 4:48:00PM 4:48:30PM 4:49:00PM 4:49:30PM 4:50:.00PM 4:50:30PM 4:51:00PM

—® Current workers: 0 —® Target workers: 0

File "/usr/local/lib/python3.9/site-packages/aiohttp/client_reqrep.py", line 1
raise ClientResponseError(
aiohttp.client_exceptions.ClientResponseError: 429, message='Too Many Requests',

Traffic by response code

e 2 Cloud SQL Admin API
calls/connection

e 600 Cloud SQL Admin API .
calls/minute

— 300 new connections/minute
maximum

T T T T T T T T
UTC+2 4:44PM 4:45PM 4:46 PM 4:47PM 4:48PM 4:49PM 4:50PM 4:51PM

—® 200: - —M 429: 3/s

How many concurrent operations in

ni-standard-2

Apache Beam ?

L LLEg (AT A
JuE E[]:
CPU CPU Beam Python SDK Beam Java/Go SDK
e s
Batch
%}ﬁ J:CSE lg;fjcess per
12 Threads 12 Threads / 1 thread per
® D ef au It 2 VC P U s Parallelism :r::: B
e Default 12 threads
12 connections 12 connections [) M aX] DO F n pe r t h rea d :h?:;n per
[] 24 D O F n S /n1 - St a n d a rd - 2 numbers a:::t:::::to change a?::;‘time.) st 1‘;JPoUFn per

Streaming without
Streaming Engine

1 process per vCPU
12 threads per process

12 threads per vCPU

1 DoFn per thread

12 DoFn per vCPU

Streaming Engine

1 process per
vCPU

12 threads per
process

12 threads per
vCPU
1 DoFn per

thread

12 DoFn per
VCPU

max(connections) = # workers x vCPUs/worker x # threads x # SQLDoFns steps

S

4

(U}

=

T

Leverage the beam.shared module

can have non-transient instance
variable state that will be deserialized

e Pool of connections shared at the P Do et s s e

no shared (global) static variable access (no sync mechanism) but a beam
. bl

worker level S
e apache beam.utils.Shared module | —_—

because DoFns can be retried on failed bundles

passed instance or deserialized on workers _|

If state variables are known at pipeline construction step
initialize state variables by constructor

Call of teardown is best effort; do not use for side effects
L

max(connections) = # workers x # vCPUs/worker x pool size

https://beam.apache.org/releases/pydoc/2.47.0/apache_beam.utils.shared.html

can have non-transient instance]

L] L]
a I u I e a l I I I Ig variable state that will be deserialized
do not include enclosing class serializable state; use static
nested DoFn or define as anonymous class in static method

no shared (global) static variable access (no sync mechanism) but a beam
state (based on engine i be injected

keep as pure function as possible or i
because DoFns can be retried on failed bundles

create DoFn ,
on workers _|

passed instance or deseriali

If state variables are known at pipeline construction step
initialize state variables by constructor

e Side effects of the DoFn setup
e Exponential backoff algorithm —— N

If state variables do not depend on the main pipeline program and are the
same for all DoFn instances initialize them in setup

If state variables are computed by the pipeline
‘pass it in a PeollectionView as a side input

Call of teardown is best effort; do not use for side effects
L

max(connections) = # workers x # vCPUs/worker x pool size

A focus on idempotency

How to deal with “the not exactly” once execution ?

e 'SQL’ Definition : An operation that produces the

same results no matter how many times it is

performed

e INSERT and UPDATE statements have to be done
carefully

e Check the state of a row before applying a
statement

=4

CREATE TABLE my_schema.product_table (
id VARCHAR(32) NOT NULL,
product VARCHAR(32) NOT NULL,
quantity NUMERIC(9) NOT NULL
PRIMARY KEY(id)

);

-— KO

INSERT INTO my_schema.product_table ('id', 'product')

VALUES ('coke_id', 'coke', 1000)

—— ERROR: duplicate key value violates unique constraint...

-— 0K

INSERT INTO my_schema.product_table ('id', 'product')
VALUES ('coke_id', 'coke', 1000)

ON CONFLICT DO NOTHING

Our solution

pipeline(pipeline_options, data_size: il max_num_workers: pool_size: B)E
beam.Pipeline(=pipeline_options) p:
shared_handle = shared.Shared()

data = p | beam.Create(range(data_size)) | beam.Reshuffle()
prepared_data = data | beam.ParDo(PreprocessData())

enriched_data (prepared_data
| >> beam.Reshuffle(=max_num_workers)
| >> beam.ParDo(EnrichSQLDoFn(=shared_handle =pool_size))
| >> beam.Reshuffle()
)

enriched_data | beam.ParDo(AnotherPreprocessData())

AN b6
M

T

”n
c
S

Key takeaways

e The available Apache Beam Cloud SQL connectors are useful as an
input or output of a pipeline
e Configuring your own Cloud SQL connector using DoFns requires:

@)

@)
@)
@)

The use of the Setup method for instantiation

The use of beam Shared module to share a connection pool
A well defined connector object if the workload is heavy

A retry mechanism in case of failed requests (Exponential
Backoff Algorithm for instance)

Carefully chosen idempotent SQL statements

3=AM

NYC 2023

How to balance power and control when
using Dataflow with an OLTP SQL Database ?

Florian Bastin: Linkedin
Léo Babonnaud: Linkedin

Octo Technology: https://octo.com/

https://www.linkedin.com/in/florian-bastin-08940b131/
https://www.linkedin.com/in/l%C3%A9o-babonnaud-a08432122/

