Use Apache Beam to build
Machine Learning Feature

System at Affirm

Use Apache Beam To Build

Machine Learning Feature
System At Affirm

- Hao Xu

0 N

ABOUT ME

Affirm -> JP Mo

TABLE OF CONTENTS

O1 02
BACKGROUND PAIN POINTS
e MLFS e Slowness
e Stream Platform e Learning curves
03 04
SOLUTION OUTCOME

e Unified transformation e Performance
e OOTBAPIs e Dev Velocity

Background

® BNPL
® Machine learning feature store
® Streaming and Batch Compute Platform

The Story of BNPL

Your 3 payments Pick a payment plan
of $50.00
$233.00/montniy IETEIENN
B 000% 8000 450000

Total of payments $150.00 v

$12°-°°/momhly

E APR Interest Total
Set up automatic payments (optional) 15.01% $22.66 $522.66

You'll pay $50.00 on each due date.

ssz.OOImonthly

APR Interest Total
Complete your order 15.01% $42.40 $542.40

The Story of BNPL

First payment E Third payment l E"l

I 03-15 I 05-15
02-15 04-15

Second Payment i Forth payment

If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the
issue? Should we approve another loan for them?

Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days.
Utilizing stream data can help prevent such delays in the future.

s amazon §g kafka
= KINESIS |

Accept ACH Payments

Feature Store

Raw / Structured Data Models

Engineering Feature Store
LN N 5 ;

Figure 1. A feature store is the interface between feature engineering and model development.

Pain Points

Development Velocity

Slow backfilling of stream features.
Excessive code required to define a feature.

Variety

Inability to join two streams from Kinesis
together, which is typically required for
stateful processing.

Visibility
Lack of registry to quickly lookup data
sources, features and metadata.

Solution

MLFS Architecture

(@ FEAST

user_payments_view
source: flink,

}

schema: user_id, payment_result,

Apache

&FI nk

Beam

Y
APACHE K

— - opPar

VMQSQRL—' @,

Online Store)
serving

é]—x o ow

Offline Store training pipeline

Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time

5 FEAST Jobjar
user_payments_wew r—-—- - — — — — — — —

{
source: flink,

schema: user_id,
payment_result, d
} - — generate job statefill job

Lf/ ‘MHSQRL

[1anguage-specific .
Language Portability Architecture I anguage-agnostic containers:
- name: spark-kubernetes-executor

volumeMounts:

“—‘ Job Server - name: beam-data
Job API mountPath: /opt/apache/beam/
initContainers:

Runner API
@ S
- name: init-beam

&

/\«’”& image: apache/beam_python3.7_sdk
command:
Backend (e.g. Spark) = GO
- /opt/apache/beam/boot

mountPath: /init-container/data

an API volumes:
. - name: beam-data

Fn API

Executable Executable - /init-container/data/boot
TaSkz TaSK N volumeMounts:
Stage Stage
- name: beam-data

Unified Transformation Interface

class UnifiedTransformer (Transformer[beam.PCollection, beam.PCollection]):

def self) -> beam.WindowInto:
return self._ window

def self) -> beam.PTransform:
return self. event_transform

def self) -> beam.PTransform:
return self. aggregator

def self, inputs: beam.PCollection) -> beam.PCollection:
if self feast_context.runner == Runner.flink:

if self.window:
inputs = inputs | self.window

return
inputs
| self.event_ transform.with output types(Tuple)
| self.aggregator.with_ output_types (Tuple)

elif self.feast context.runner == Runner.spark:
return
inputs
| self.event_ transform.with output types(Tuple)
| self.aggregator.with_ output_types (Tuple)

r ("Unsupported runner: {}.".format(self.feast_context.runner))

Unified Transformation Interface

entities=[entity registry['user ari']],

ttl=timedelta (days=0) ,

schema=[
Field(name="user ari", dtype=String),
Field(name="timestamp", dtype=UnixTimestamp) ,
Field(name="latest payment fail", dtype=UnixTimestamp),
Field(name="latest payment fail ach nsf", dtype=UnixTimestamp) ,

] 4

online=True,

source=user_payment fails stream source,

timestamp field="timestamp",

tags={},

mode="£f1link",

def (feast context: FeastContext, inputs: PCollection) -> PCollection:
transformer = UnifiedTransformer (

feast_context=feast_context,

aggregator=LatestFeatureAggregator (feast context, 'timestamp'),

event transform=extract_payment fail data,

ormer.run (inputs)

Performance boost

100 @ MLFS v0
Backﬁlling time B MLFSv1

Backfilling time
improved by 80%

75

Code lines >0

Reduced 100+ lines to
20+ lines 25

Registry 0 . -

200+ data sources
100+ features

The time spent to backfill features for feature
time_since_user_checkout and
tiem_since_user_last_payment._failure

Future improvement

1. OOTB transformation interface
2. Transformation framework

3. Improvement on Beam Spark Runner

