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Background
● BNPL
● Machine learning feature store
● Streaming and Batch Compute Platform



The Story of BNPL



The Story of BNPL
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If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the 
issue? Should we approve another loan for them?



Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days. 
Utilizing stream data can help prevent such delays in the future.



Feature Store

Figure 1. A feature store is the interface between feature engineering and model development.



Pain Points



Pain Points

Development Velocity
Slow backfilling of stream features.
Excessive code required to define a feature.

Inability to join two streams from Kinesis 
together, which is typically required for 
stateful processing.

Lack of registry to quickly lookup data 
sources, features and metadata.

Variety

Visibility



Solution



MLFS Architecture



Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time



Unified Transformation Interface
class UnifiedTransformer(Transformer[beam.PCollection, beam.PCollection]):
       
   @property
   def window(self) -> beam.WindowInto:
       return self._window

   @property
   def event_transform(self) -> beam.PTransform:
       return self._event_transform

   @property
   def aggregator(self) -> beam.PTransform:
       return self._aggregator

   def run(self, inputs: beam.PCollection) -> beam.PCollection:
       if self.feast_context.runner == Runner.flink:
           if self.window:
               inputs = inputs | self.window
           return (
               inputs
               | self.event_transform.with_output_types(Tuple)
               | self.aggregator.with_output_types(Tuple)
           )
       elif self.feast_context.runner == Runner.spark:
           return (
               inputs
               | self.event_transform.with_output_types(Tuple)
               | self.aggregator.with_output_types(Tuple)
           )
       else:
           raise ValueError("Unsupported runner: {}.".format(self.feast_context.runner))



Unified Transformation Interface

@stream_feature_view(
   entities=[entity_registry['user_ari']],
   ttl=timedelta(days=0),
   schema=[
       Field(name="user_ari", dtype=String),
       Field(name="timestamp", dtype=UnixTimestamp),
       Field(name="latest_payment_fail", dtype=UnixTimestamp),
       Field(name="latest_payment_fail_ach_nsf", dtype=UnixTimestamp),
   ],
   online=True,
   source=user_payment_fails_stream_source,
   timestamp_field="timestamp",
   tags={},
   mode="flink",
)
def user_last_payment_fail(feast_context: FeastContext, inputs: PCollection) -> PCollection:
   transformer = UnifiedTransformer(
       feast_context=feast_context,
       aggregator=LatestFeatureAggregator(feast_context, 'timestamp'),
       event_transform=extract_payment_fail_data,
   )
   return transformer.run(inputs)



Outcome



Performance boost

The time spent to backfill features for feature 
time_since_user_checkout and 

tiem_since_user_last_payment_failure

Backfilling time 
improved by 80%

Backfilling time
80%

Reduced 100+ lines to 
20+ lines

Code lines
60%

200+ data sources
100+ features

Registry
40%



Future improvement
1. OOTB transformation interface
2. Transformation framework
3. Improvement on Beam Spark Runner




