
NYC 2023

Hao Xu

Use Apache Beam to build
Machine Learning Feature

System at Affirm

Use Apache Beam To Build
Machine Learning Feature
System At Affirm

- Hao Xu

ABOUT ME
Earnest -> Fast -> Affirm -> JP Morgan & Chase

01

TABLE OF CONTENTS

● MLFS
● Stream Platform

● Slowness
● Learning curves

● Unified transformation
● OOTB APIs

● Performance
● Dev Velocity

01

03

02

04

BACKGROUND PAIN POINTS

SOLUTION OUTCOME

Background
● BNPL
● Machine learning feature store
● Streaming and Batch Compute Platform

The Story of BNPL

The Story of BNPL

04-15

Third payment

05-15

Forth payment

02-15

First payment

03-15

Second Payment

If a user failed the third payment, is it likely that they will also fail the fourth one?

Has the user failed to make a loan payment, and if so, have we identified the
issue? Should we approve another loan for them?

Payment flow

The payment data was processed in batches, resulting in a delay of a couple of days.
Utilizing stream data can help prevent such delays in the future.

Feature Store

Figure 1. A feature store is the interface between feature engineering and model development.

Pain Points

Pain Points

Development Velocity
Slow backfilling of stream features.
Excessive code required to define a feature.

Inability to join two streams from Kinesis
together, which is typically required for
stateful processing.

Lack of registry to quickly lookup data
sources, features and metadata.

Variety

Visibility

Solution

MLFS Architecture

Complex of Backfilling

Backfilling is the process to backfill a feature data to the historical point in time

Unified Transformation Interface
class UnifiedTransformer(Transformer[beam.PCollection, beam.PCollection]):

 @property
 def window(self) -> beam.WindowInto:
 return self._window

 @property
 def event_transform(self) -> beam.PTransform:
 return self._event_transform

 @property
 def aggregator(self) -> beam.PTransform:
 return self._aggregator

 def run(self, inputs: beam.PCollection) -> beam.PCollection:
 if self.feast_context.runner == Runner.flink:
 if self.window:
 inputs = inputs | self.window
 return (
 inputs
 | self.event_transform.with_output_types(Tuple)
 | self.aggregator.with_output_types(Tuple)
)
 elif self.feast_context.runner == Runner.spark:
 return (
 inputs
 | self.event_transform.with_output_types(Tuple)
 | self.aggregator.with_output_types(Tuple)
)
 else:
 raise ValueError("Unsupported runner: {}.".format(self.feast_context.runner))

Unified Transformation Interface

@stream_feature_view(
 entities=[entity_registry['user_ari']],
 ttl=timedelta(days=0),
 schema=[
 Field(name="user_ari", dtype=String),
 Field(name="timestamp", dtype=UnixTimestamp),
 Field(name="latest_payment_fail", dtype=UnixTimestamp),
 Field(name="latest_payment_fail_ach_nsf", dtype=UnixTimestamp),
],
 online=True,
 source=user_payment_fails_stream_source,
 timestamp_field="timestamp",
 tags={},
 mode="flink",
)
def user_last_payment_fail(feast_context: FeastContext, inputs: PCollection) -> PCollection:
 transformer = UnifiedTransformer(
 feast_context=feast_context,
 aggregator=LatestFeatureAggregator(feast_context, 'timestamp'),
 event_transform=extract_payment_fail_data,
)
 return transformer.run(inputs)

Outcome

Performance boost

The time spent to backfill features for feature
time_since_user_checkout and

tiem_since_user_last_payment_failure

Backfilling time
improved by 80%

Backfilling time
80%

Reduced 100+ lines to
20+ lines

Code lines
60%

200+ data sources
100+ features

Registry
40%

Future improvement
1. OOTB transformation interface
2. Transformation framework
3. Improvement on Beam Spark Runner

