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Overview: Streaming @ Google

e History of Streaming @ Google

e Streaming Appliance vs Streaming Engine

e Streaming Basics




History of Streaming @ Google

Everything was batch
MapReduce

First streaming systems were designed for Ads

Streaming MapReduce
MillWheel

Streaming Flume
Windmill (Dataflow)




History of Streaming @ Google

Cloud Dataflow
+

Apache Beam

|

2010 2013 2015

MapReduce Millwheel

MillWheel: Fault-Tolerant Stream Processing at ‘The Dataflow Model: A Practical Approach to Balancing
Internet Scale Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processit

FlumeJava: Easy, Efficient Data-Parallel Pipelines

Simple distributed . R .
data processing Logical pipelines Low-latency Batch + Streaming
& optimization streaming Serverless Cloud




Streaming Engine vs Streaming Appliance

Streaming Appliance Streaming Engine
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Streaming Engine vs Streaming Appliance
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Streaming Engine vs Streaming Appliance

Benefits of Streaming Engine:

More efficient use of User Workers
No need for Persistent Disks
More responsive Horizontal Autoscaling

Improved supportability and visibility




Streaming Basics

Pipeline example What Datoflow Streaming Sees

ParDo
Window




Streaming Basics

Every message has a key assigned to it

Keys can be user defined or system defined
Keys are hashed

Elements are processed in the context of a key
Keys are the basic unit of parallelism
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Streaming Basics

Keys belong to key-ranges
Key ranges are
assigned to workers

Key ranges can be ParDo
split and sent Window

to different workers

NOTE: all range boundaries are hexadecimal values.




Streaming Basics

Keys belong to key-ranges
Key ranges are
assigned to workers

Key ranges can be ParDo
split and sent Window

to different workers




Streaming Basics
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Streaming Basics
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Autotuning



Autotuning: Asymmetric Autoscaling

C féackend Worke};: b \ User Workers

Past: Scaling backend workers i
linearly with user workers.
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Present: Scaling each worker pool
independently.
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Autotuning: Key-Based Throttling
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Autotuning: Downscale Dampening

Past: Only consider the current state (backlog, throughput, etc))

Present: Track scaling frequencies, downscale slower when yo-yoing
detected (frequent up/down scaling in short time frame).
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Autotuning: Scaling Actuation Latencies

Past: When autoscale events happen, new workers need to load the
pipeline state from persistence. This can take time and lead to backlog
and latency.

Present: Transfer info directly from workers, reducing latency
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Autotuning: Scaling Actuation Latencies

Past: When autoscale events happen, new workers need to load the
pipeline state from persistence. This can take time and lead to backlog
and latency.

Present: Transfer info directly from workers, reducing latency




Autotuning: Scaling Actuation Latencies

Latency Disabled (top) vs Enabled (bottom)
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Autotuning: Scaling Actuation Latencies

User Workers Disabled vs Enabled
Autoscaling recommendations grouped by Borg task (@
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Autotuning: Range Rebalancing

Past: If a key range has a disproportionate amount of input rate, its worker
would have more load than others, potentially accumulating backlog and
wasting resources on other workers.

Present: We can split key ranges dynamically and rebalance them across
workers based on their throughput

| s00mbs 800mbs
300mbrs




Autotuning: Range Rebalancing

Past: If a key range has a disproportionate amount of input rate, its worker
would have more load than others, potentially accumulating backlog and
wasting resources on other workers.

Present: We can split key ranges dynamically and rebalance them across
workers based on their throughput
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Autotuning: Range Rebalancing

User Workers - (@
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Autotuning: BigQuery Autosharding

Past: Autosharding was only available for Streaming Inserts / File Loads
and was load agnostic, which could lead to wasted resources in case of

dynamic destinations

Present: StorageAPI gets autosharding option, using backlog and
throughput as metric.

200mb/s

100mb/s

1mb/s




Autotuning: BigQuery Autosharding

Past: Autosharding was only available for Streaming Inserts / File Loads
and was load agnostic, which could lead to wasted resources in case of

dynamic destinations

Present: StorageAPI gets autosharding option, using backlog and

throughput as metric.
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Autotuning: BigQuery Autosharding

Streaming Inserts + Autosharding

Storage API
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GCP PubSub Integration



PubSub Streaming Pull

Past: Pipelines used old Pubsub APl Unary Pull

Present: Pipelines use newer Pubsub API Streaming Pull, improving
throughput and latency

[ Pubsub
L Unary API




PubSub Streaming Pull

Past: Pipelines used old Pubsub APl Unary Pull

Present: Pipelines use newer Pubsub API Streaming Pull, improving
throughput and latency

Pubsub
Streaming Pull




PubSub Streaming Pull

Latency and Backlog Improvements

data_watermark (Average) ¢ backlog_bytes (Average) ¢ pull_to_ack_p90 (Average)

4.80M 32.0M 24.0

M\W




Usage improvements

PubSub Streaming Pull

Streaming

E—]

1 e —

0

T T T T T T T T
uUTC-7 12:20PM 12:25PM 12:30PM 12:35PM 12:40PM 12:45PM 12:50PM 12:55PM

—® Current workers: 59 —Mm Target workers: 59

Autoscaling @
Unary/

T T T T T
1:00PM 1:05PM 1:10PM 1:20PM 1:25PM
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]

T T T T T
12:35PM 12:40PM 12:45PM 12:50PM 12:55PM

—M Target workers: 300

T T T
12:20PM 12:25PM 12:30PM

—® Current workers: 300

uTC-7

Latest worker status:

VvV MORE HISTORY

T T T T T T
1:00PM 1:06PM 1:10PM 1:15PM 1:20PM 1:25PM

Autoscaling: Raised the number of workers to 300 so that the pipeline can catch up with its backlog and keep up with its input rate.




Observability



Observability: New Metrics

Collecting many new Streaming Engine

metrics

New Metrics

Some integrated into Dataflow Ul

Metrics Path
Duplicates Filtered /job/duplicates_filtered_out_count
. . . . Processing Parallelism /job/processing_parallelism_keys
All available in Monitoring Ul G 5o bl by
Backlog Seconds /job/estimated_backlog_processing_time
Timers Processed /job/timers_processed_count
Timers Resident /job/timers_pending_count
AV O i I-O b le d O S h b O O rd t e m p lot e fo r eo Sy Status of Streaming Pull connections /job/pubsub/streaming_pull_connection_status
The number of bytes produced by this ptransform  /job/estimated_bytes_produced_count
Checkpoint bytes written /job/streaming_engine/persistent_state/write_bytes_count
Checkpoint bytes read /job/streaming_engine/persistent_state/read_bytes_count
M M M M Checkpoint Latency /job/streaming_engine/persistent_state/write_latencies
d etO I led J O b p e rfo r m O n C e m O n I to r I n 9 User Processing Latency /job/bundle_user_processing_latencies
Key (Range) Availability /job/streaming_engine/key_processing_availability
The number of bytes cc d by this p orm  /job/estimated_bytes_consumed_count
The number of bytes being processed by ptransform /job/estimated_bytes_active
Pubsub Pull to Ack Latency /job/pubsub/pulled_message_ages
Persistent State Usage /job/streaming_engine/persistent_state/stored_bytes
Late pubsub messages liob/pubsub/late_messages_count
Target workers ljob/target_worker_instances
Pubsub Publish Messags/Errors /job/pubsub/published_messages_count




Launched Observability: Dataflow Ul

JOB GRAPH EXECUTION DETAILS JOB METRICS COST RECOMMENDATIONS AUTOSCALING

~4 Metrics K Processing I0 SAVE AS DASHBOARD
Vv OVERVIEW METRICS

Data freshness User processing latencies heatmap @ Create alerting policy = ™M ==

System latency
Throughput
Errors

vV STREAMING METRICS

Backlog

Processing
10:50 AM 11:00AM 11:10AM 11:20AM 11:30AM 11:40 AM 11:50 AM 12:00PM 12:10PM
Parallelism
oM Metric Name value I
Persistence
~— [[] REDUCE_PERCENTILE_50 50th Percentile
Duplicates

— [] REDUCE_PERCENTILE_95 95th Percentile 0.1Tmin
Timers SE only

~— [] REDUCE_PERCENTILE_99 99th Percentile 0.16min
V' RESOURCE METRICS




Launched Observability: Dashboard Template

<& [ - Dataflow Job % SENDFEEDBACK  #% [1 X QOFF TIME 1H 6H 10 TW 1M 6W CUSTOM  PDT

Group By - ] ADD FILTER

Current number of vCPUs in use [SUM] Per-stage backlog in bytes [SUM]

byjobid(sum) 1 min interval (interpolate) byjobid, stage (sum) 1 min interval (interpolate)

Monitoring Dashboards Overview + CREATE DASHBOARD

Metrics Scope
1 project DASHBOARD LIST SAMPLE LIBRARY

Overview

Categories Dataflow Samples & IMPORT

Dashboards

i = Fi Filter Dashboards 1100 AM nobAM  tzo0pm
Integrations Filter by category Filter
Name
CouchDB Throughput : Duplicate message count per stage [SUM]

Services
Dataflow Job
byjobid, form (sum) 1 by job id, stage (sum) 1 min interval (rate)

Metrics explorer Couchbase

Metrics diagnostics Dataflow

Elasticsearch

Importing template

11:00 AM 11:00 AM

Preview of first few graphs




Other Projects



Out of the box

We wanted to test the throughput of sources and sinks without any

special settings. We got to 10 GB/s for these |/O combos:

Pubsub to BQ
Pubsub to Pubsub
Pubsub to GCS*
Kafka to GCS*
Kafka to BQ




Out of the box

Pubsub to GCS example

Throughput = @

—F20 (DFE) —F21 (DFE) —F22 (DFE) —F23 (DFE) - F24 (DFE) —PO0 (Aggregator) —P2 (Aggregator) —P4 (Aggregator) -P6 (Aggregator) —P8 (Aggregator) ¥
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—user worker: PO_—user worker: P2 —user worker: P4 —user worker: P6_—user worker: P8 —windmill worker (WIP) P0_—windmill worker (WIP) P2 —windmill worker (WIP) P4 - windmill worker (WIP) P6_—windmill worker (WIP) P8 ¥
75s




Daotaflow Cookbook

Collection of +190 self-contained Dataflow pipelines ready to use,
including most common sources, sinks, and use cases.

https://qithub.com/GoogleCloudPlatform/dataflow-cookbook



https://github.com/GoogleCloudPlatform/dataflow-cookbook
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