

Dataflow Streaming
What's New & What's Next?

IAigo San Jose, Tom Stepp

Google

Overview
Autotuning

GCP PubSub Integration

Observability

Other Projects

Overview

Overview: Streaming @ Google

e History of Streaming @ Google

e Streaming Appliance vs Streaming Engine

e Streaming Basics

History of Streaming @ Google

Everything was batch
MapReduce

First streaming systems were designed for Ads

Streaming MapReduce
MillWheel

Streaming Flume
Windmill (Dataflow)

History of Streaming @ Google

Cloud Dataflow
+

Apache Beam

|

2010 2013 2015

MapReduce Millwheel

MillWheel: Fault-Tolerant Stream Processing at ‘The Dataflow Model: A Practical Approach to Balancing
Internet Scale Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processit

FlumeJava: Easy, Efficient Data-Parallel Pipelines

Simple distributed . R .
data processing Logical pipelines Low-latency Batch + Streaming
& optimization streaming Serverless Cloud

Streaming Engine vs Streaming Appliance

Streaming Appliance Streaming Engine

\
\

User Code Windmill Worker(s) }

Windmill

Streaming Engine vs Streaming Appliance

Streaming Appliance Streaming Engine

\

User Code)
_ Windmill Worker(s) }

Windmill |

Streaming Engine vs Streaming Appliance

Benefits of Streaming Engine:

More efficient use of User Workers
No need for Persistent Disks
More responsive Horizontal Autoscaling

Improved supportability and visibility

Streaming Basics

Pipeline example What Datoflow Streaming Sees

ParDo
Window

Streaming Basics

Every message has a key assigned to it

Keys can be user defined or system defined
Keys are hashed

Elements are processed in the context of a key
Keys are the basic unit of parallelism

Logical Keyspace Hashed (Physical) Keyspace
Logical Keyspace Physical (Hashed) Keyspace =
Aardvark—__ | | 5£58716B24_Banana ’_'_4_I_l—‘—_'

Apple :>,<:::>9F6290F443_Aardvark
a><\

Banan

:

16009 5604 | |

FATFB528798 Apple

186009"v€£89

116009"z4v9 | |

2160098062
2916009908y

Streaming Basics

Keys belong to key-ranges
Key ranges are
assigned to workers

Key ranges can be ParDo
split and sent Window

to different workers

NOTE: all range boundaries are hexadecimal values.

Streaming Basics

Keys belong to key-ranges
Key ranges are
assigned to workers

Key ranges can be ParDo
split and sent Window

to different workers

Streaming Basics

[00, 78) [00, 78)
[78, AB) [AB, FF]

[AB, FF]

Streaming Basics

[00, 78) [00, 78)
[78, AB) [AB, FF]

[AB, FF]

| 9696_Meat
| 3141_Frui

Autotuning

Autotuning: Asymmetric Autoscaling

C féackend Worke};: b \ User Workers

Past: Scaling backend workers i
linearly with user workers.

—

LN
) pammn

vCPU Ratio

Present: Scaling each worker pool
independently.

workers
03885883888

Baseline Asymmetric

Autotuning: Key-Based Throttling

User Workers 5 (D
P t. U d H t H l l -5\6!ovkers requested by DFE_~Workers requested by aggregator _=Active Workers reported by DFE_=Active Workers reported by aggregator ~Max Workers reported by DFE =Ma v
ast. Unconalitionaty

45
40

throttling user worker o

upscole if <20% CPU E;E Throttled by CPU
utilization. ; e P i i

9 00 1730 200 230

Present: Throttle user
WO r ke r' U p S C O le O n key veer w:wms%:er: MJ ugled by DFE 93 =Workers requested by DFE 173 rh d by aggregator 4 =Workers requested by aggregator 8 ~Workers requested by aggregator 9 =, .. ¥

45

parallelism limits Egg
(number of keys). x

5
e b 7 S 5

Autotuning: Downscale Dampening

Past: Only consider the current state (backlog, throughput, etc))

Present: Track scaling frequencies, downscale slower when yo-yoing
detected (frequent up/down scaling in short time frame).

User Workers) (@

=Workers requested by DFE_=Workers requested by agaregator 7 =Workers requested by aggregator 10 =Workers requested by agaregator 12 - Workers requested by aggregator 13 =Workers requested by aggregator 17 ~Workers requested by agaregator 18 =Workers requested by aggregator 19 - Workers requested by aggregator 20 =Wor .. ¥

03:00 06:00 038:00
Before
wP0 =P1 =P10 =P2 «~P3 =P4 ~P5 =P6 ~P7 =P8 P9 ¥

l

I'l il

| -

1 I ‘ | Il \
] l“ " '”/ ‘5 “ | ‘ { ‘ 1‘1 nltl ll.nl WM f " A“ W" YA ! b Ll l ‘ .,’ "".‘u

Autotuning: Scaling Actuation Latencies

Past: When autoscale events happen, new workers need to load the
pipeline state from persistence. This can take time and lead to backlog
and latency.

Present: Transfer info directly from workers, reducing latency

Autotuning: Scaling Actuation Latencies

Past: When autoscale events happen, new workers need to load the
pipeline state from persistence. This can take time and lead to backlog
and latency.

Present: Transfer info directly from workers, reducing latency

Autotuning: Scaling Actuation Latencies

Past: When autoscale events happen, new workers need to load the
pipeline state from persistence. This can take time and lead to backlog
and latency.

Present: Transfer info directly from workers, reducing latency

Autotuning: Scaling Actuation Latencies

Past: When autoscale events happen, new workers need to load the
pipeline state from persistence. This can take time and lead to backlog
and latency.

Present: Transfer info directly from workers, reducing latency

Autotuning: Scaling Actuation Latencies

Latency Disabled (top) vs Enabled (bottom)

Delivery Age Distribution = (® v
=P50 () =P95 () =P99.9 ()

2.5min

) 2.25min
2min

o 1.75min

& 1.5min

75s

® 1min

- 45s

30s

15s

=P50 () =P95() =P99.9(0 ¥

Autotuning: Scaling Actuation Latencies

User Workers Disabled vs Enabled
Autoscaling recommendations grouped by Borg task (@
=DFE in in,0 =Aggregator inin,0 ¥

50

40

30

20

10

0

Autoscaling recommendations grouped by Borg task . (®
2 =DFE in in,0 =Aggregatorinin0 ¥

18
16| -
4]

G e
: O i =S

Autotuning: Range Rebalancing

Past: If a key range has a disproportionate amount of input rate, its worker
would have more load than others, potentially accumulating backlog and
wasting resources on other workers.

Present: We can split key ranges dynamically and rebalance them across
workers based on their throughput

| s00mbs 800mbs
300mbrs

Autotuning: Range Rebalancing

Past: If a key range has a disproportionate amount of input rate, its worker
would have more load than others, potentially accumulating backlog and
wasting resources on other workers.

Present: We can split key ranges dynamically and rebalance them across
workers based on their throughput

|

50mb/s

300mb/s

50mb/s

Autotuning: Range Rebalancing

User Workers - (@
-\Aé%rkers requested by DFE =Workers requested by aggregator =Active Workers reported by DFE =Active Workers reported by aggregator --Max Workers reported by DFE =Max ' ...

02Mar 03 00 06:00 09 00 12 00 15 00 18 00 21 00 03Mar 03: 00

Autotuning: BigQuery Autosharding

Past: Autosharding was only available for Streaming Inserts / File Loads
and was load agnostic, which could lead to wasted resources in case of

dynamic destinations

Present: StorageAPI gets autosharding option, using backlog and
throughput as metric.

200mb/s

100mb/s

1mb/s

Autotuning: BigQuery Autosharding

Past: Autosharding was only available for Streaming Inserts / File Loads
and was load agnostic, which could lead to wasted resources in case of

dynamic destinations

Present: StorageAPI gets autosharding option, using backlog and

throughput as metric.

200mb/s

100mb/s

1mb/s

Autotuning: BigQuery Autosharding

Streaming Inserts + Autosharding

Storage API

900
800
700
600

§
400
300
200
100

0

04:00 B ; 2 06:00 0630 07:00 0730 08:00 08:30 05:00 0530
User Workers == (@

=Workers i by DFE k d by agaregator =Active Workers reported by DFE =Active Workers reported by aggregator ¥

1000

Storage API + Autosharding -

GCP PubSub Integration

PubSub Streaming Pull

Past: Pipelines used old Pubsub APl Unary Pull

Present: Pipelines use newer Pubsub API Streaming Pull, improving
throughput and latency

[Pubsub
L Unary API

PubSub Streaming Pull

Past: Pipelines used old Pubsub APl Unary Pull

Present: Pipelines use newer Pubsub API Streaming Pull, improving
throughput and latency

Pubsub
Streaming Pull

PubSub Streaming Pull

Latency and Backlog Improvements

data_watermark (Average) ¢ backlog_bytes (Average) ¢ pull_to_ack_p90 (Average)

4.80M 32.0M 24.0

M\W

Usage improvements

PubSub Streaming Pull

Streaming

E—]

1 e —

0

T T T T T T T T
uUTC-7 12:20PM 12:25PM 12:30PM 12:35PM 12:40PM 12:45PM 12:50PM 12:55PM

—® Current workers: 59 —Mm Target workers: 59

Autoscaling @
Unary/

T T T T T
1:00PM 1:05PM 1:10PM 1:20PM 1:25PM

I

]

T T T T T
12:35PM 12:40PM 12:45PM 12:50PM 12:55PM

—M Target workers: 300

T T T
12:20PM 12:25PM 12:30PM

—® Current workers: 300

uTC-7

Latest worker status:

VvV MORE HISTORY

T T T T T T
1:00PM 1:06PM 1:10PM 1:15PM 1:20PM 1:25PM

Autoscaling: Raised the number of workers to 300 so that the pipeline can catch up with its backlog and keep up with its input rate.

Observability

Observability: New Metrics

Collecting many new Streaming Engine

metrics

New Metrics

Some integrated into Dataflow Ul

Metrics Path
Duplicates Filtered /job/duplicates_filtered_out_count
. . . . Processing Parallelism /job/processing_parallelism_keys
All available in Monitoring Ul G 5o bl by
Backlog Seconds /job/estimated_backlog_processing_time
Timers Processed /job/timers_processed_count
Timers Resident /job/timers_pending_count
AV O i I-O b le d O S h b O O rd t e m p lot e fo r eo Sy Status of Streaming Pull connections /job/pubsub/streaming_pull_connection_status
The number of bytes produced by this ptransform /job/estimated_bytes_produced_count
Checkpoint bytes written /job/streaming_engine/persistent_state/write_bytes_count
Checkpoint bytes read /job/streaming_engine/persistent_state/read_bytes_count
M M M M Checkpoint Latency /job/streaming_engine/persistent_state/write_latencies
d etO I led J O b p e rfo r m O n C e m O n I to r I n 9 User Processing Latency /job/bundle_user_processing_latencies
Key (Range) Availability /job/streaming_engine/key_processing_availability
The number of bytes cc d by this p orm /job/estimated_bytes_consumed_count
The number of bytes being processed by ptransform /job/estimated_bytes_active
Pubsub Pull to Ack Latency /job/pubsub/pulled_message_ages
Persistent State Usage /job/streaming_engine/persistent_state/stored_bytes
Late pubsub messages liob/pubsub/late_messages_count
Target workers ljob/target_worker_instances
Pubsub Publish Messags/Errors /job/pubsub/published_messages_count

Launched Observability: Dataflow Ul

JOB GRAPH EXECUTION DETAILS JOB METRICS COST RECOMMENDATIONS AUTOSCALING

~4 Metrics K Processing I0 SAVE AS DASHBOARD
Vv OVERVIEW METRICS

Data freshness User processing latencies heatmap @ Create alerting policy = ™M ==

System latency
Throughput
Errors

vV STREAMING METRICS

Backlog

Processing
10:50 AM 11:00AM 11:10AM 11:20AM 11:30AM 11:40 AM 11:50 AM 12:00PM 12:10PM
Parallelism
oM Metric Name value I
Persistence
~— [[] REDUCE_PERCENTILE_50 50th Percentile
Duplicates

— [] REDUCE_PERCENTILE_95 95th Percentile 0.1Tmin
Timers SE only

~— [] REDUCE_PERCENTILE_99 99th Percentile 0.16min
V' RESOURCE METRICS

Launched Observability: Dashboard Template

<& [- Dataflow Job % SENDFEEDBACK #% [1 X QOFF TIME 1H 6H 10 TW 1M 6W CUSTOM PDT

Group By -] ADD FILTER

Current number of vCPUs in use [SUM] Per-stage backlog in bytes [SUM]

byjobid(sum) 1 min interval (interpolate) byjobid, stage (sum) 1 min interval (interpolate)

Monitoring Dashboards Overview + CREATE DASHBOARD

Metrics Scope
1 project DASHBOARD LIST SAMPLE LIBRARY

Overview

Categories Dataflow Samples & IMPORT

Dashboards

i = Fi Filter Dashboards 1100 AM nobAM tzo0pm
Integrations Filter by category Filter
Name
CouchDB Throughput : Duplicate message count per stage [SUM]

Services
Dataflow Job
byjobid, form (sum) 1 by job id, stage (sum) 1 min interval (rate)

Metrics explorer Couchbase

Metrics diagnostics Dataflow

Elasticsearch

Importing template

11:00 AM 11:00 AM

Preview of first few graphs

Other Projects

Out of the box

We wanted to test the throughput of sources and sinks without any

special settings. We got to 10 GB/s for these |/O combos:

Pubsub to BQ
Pubsub to Pubsub
Pubsub to GCS*
Kafka to GCS*
Kafka to BQ

Out of the box

Pubsub to GCS example

Throughput = @

—F20 (DFE) —F21 (DFE) —F22 (DFE) —F23 (DFE) - F24 (DFE) —PO0 (Aggregator) —P2 (Aggregator) —P4 (Aggregator) -P6 (Aggregator) —P8 (Aggregator) ¥

01:20 01:30
InputRate = @

—PO —P2 —P4 —P6 P8 ¥

126 L1 :

106 | %WM—’G%‘

e S

E

3
46
26

0

2330 2340 2350 05May 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30
Backlog Estimate G @

—user worker: PO_—user worker: P2 —user worker: P4 —user worker: P6_—user worker: P8 —windmill worker (WIP) P0_—windmill worker (WIP) P2 —windmill worker (WIP) P4 - windmill worker (WIP) P6_—windmill worker (WIP) P8 ¥
75s

Daotaflow Cookbook

Collection of +190 self-contained Dataflow pipelines ready to use,
including most common sources, sinks, and use cases.

https://qithub.com/GoogleCloudPlatform/dataflow-cookbook

https://github.com/GoogleCloudPlatform/dataflow-cookbook

IAigo San Jose, Tom Stepp

3=AM

NYC 2023

