Introduction to Clustering in Apache Beam

Jasper Van den Bossche ML6

Q Agenda

- What is clustering?
 - Online vs offline clustering
 - What are the applications?
- How does clustering in Apache Beam work
 - High level overview of the transform
- Example pipeline

What is clustering?

What is clustering?

What is clustering?

Clustering is an *unsupervised* technique used to *group similar* data points together based on their *characteristics* or patterns.

What is Unsupervised Training?

Supervised

Unsupervised

How are datapoints grouped together?

How are datapoints grouped together?

Spectral Clustering

DBSCAN

K-means clustering

Online vs offline clustering

Offline Clustering

Online Clustering

What are the applications of clustering?

What are the applications of clustering?

Anomaly detection

- Detect fraudulent transactions
- Detect diseases
- Quality control
- Spam filters

Personalisation

- Personalised ads
- Movie/music recommendations

Grouping documents

- 1. Use a language model to calculate embeddings
- 2. Group together points in the embedding space close to each other

How does clustering in Apache Beam work

A High Level Look Behind the Scenes

Preprocessing

1. Create Batches of Datapoints

Preprocessing

2. Convert to Numpy and Reshape

Calculate Cluster Centers

Process batch by batch to calculate cluster centers

Clustering is a stateful transform

Clustering is a stateful transform

Save Model

Save the trained model to persistent storage

Assign Labels

Assign all datapoints a label using the trained model

Let's look at an example!

Example: Clustering California Houses

Group similar houses based on location and income of the owner

longitude	latitude	income
-122.23	37.83	52.000
-122.28	37.81	152.000
-122.17	37.82	48.000
-122.26	37.79	56.000
-122.23	37.84	72.000

Preparing Data

```
# 1. Calculate clustering centers and save model to persistent storage
model = (
    housing_features
    "Train clustering model" >> OnlineClustering(
        OnlineKMeans,
        n_clusters=6,
        batch_size=256,
        cluster_args={},
        checkpoints_path=known_args.checkpoints_path))
```

Training the Clustering Model

```
# 2. Calculate labels for all records in the dataset
# using the trained clustering model using in memory model
    housing_features
      "RunInference" >> AssignClusterLabelsInMemoryModel(
        model=pvalue.AsSingleton(model),
        model_id="kmeans",
        n_clusters=6,
        batch_size=512)
     beam.Map(print))
```

Calculating Predictions

Summary

- Clustering is a technique to group similar datapoints based on their characteristics
- Many applications ranging from anomaly detection to document grouping
- Clustering is a twofold transform in Apache Beam:
 - Data preprocessing and model training
 - Assigning cluster labels to datapoints

Jasper Van den Bossche

QUESTIONS?

