Per Entity Training Pipelines in Apache Beam

Jasper Van den Bossche ML6

We are a group of AI and machine learning experts building custom AI solutions.

Amongst our engineers we have several Apache Beam contributors.

🔍 Agenda

- Development of ML applications
 - What is training?
 - What is MLOps?
- What does per entity training mean?
 - Training multiple models rather than a single model?
 - Why use a per entity strategy
- Example per entity training pipeline
- Bonus: Using trained models in a RunInference pipeline

Q

What is machine learning model training?

What is machine learning model training?

Writing logic to detect the Beam macot is almost impossible

What is training a machine learning model?

What is training a machine learning model?

Q

How are machine learning applications built and deployed?

A MLOps: Level 0

BEAM SUMMIT NYC 2023

A MLOps: Level 1

A MLOps: Level 2

Q

What is per entity training?

Example: Building multilingual chatbot

What is per entity training?

Example: Detect production defects using sensor data

Example: Detect production defects using sensor data

Q

Why use a per entity strategy?

Reduce Model Infrastructure Requirements

|--|--|--|

GPU Cluster

CPU Machine

Lightweight GPU

Address fairness and bias

Easier to detect problems

.36

.08

.33

.23

.25

.12

.32

.31

Simpler models have the following advantages

Less powerful hardware required

Easier to address bias

Faster training & inference

Easier debugging

Q

But there is one big problem: How do I manage the training of all of these models?

A Manage training pipelines

C The solution? Apache Beam!

- Apache Beam can handle streaming and batch data
- Apache Beam can easily *prepare data* for training
- Apache Beam can run on different *runners* depending on the model's *requirements*
- *Abstraction* in ML libraries allows us to train models with few lines of code

Q

Let's look at an example of a per entity training pipeline

Age	Workclass	Education	Marital Status	Occupation	Relationship	Race	Sex	Hours per Week	Native Country	Compensation
25	Private	11th	Never-married	Machine-op-inspct	Own-child	Black	Male	40	USA	<=50K.
38	Private	HS-grad	Married-civ-spouse	Farming-fishing	Husband	White	Male	50	USA	<=50K.
28	Local-gov	Assoc-acdm	Married-civ-spouse	Protective-serv	Husband	White	Male	40	USA	>50K.
44	Private	Some-college	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	40	USA	>50K.
18	?	Some-college	Never-married	?	Own-child	White	Female	30	USA	<=50K.

Q Pipeline overview

0)

Split data per education level

			7	29y	 Accountant	Bachelor
			1	54y	 Plumber	Bachelor
Age	 Occupation	Education		22y	 Cashier	Bachelor
29y	 Accountant	Bachelor			 	•••
31y	 Engineer	Master				
54y	 Plumber	Bachelor		31y	 Engineer	Master
37у	 Server	High School			 	
47y	 Barista	High School				
22y	 Cashier	Bachelor		37y	 Server	High Schoo
				47y	 Barista	High Schoo

...

...

...

...

with beam.Pipeline(options=pipeline_options) as pipeline:

```
_ = (
    pipeline | "Read Data" >> beam.io.ReadFromText(known_args.input)
    | "Split data to make List" >> beam.Map(lambda x: x.split(','))
    | "Filter rows" >> beam.Filter(custom_filter)
    | "Create Key" >> beam.ParDo(CreateKey())
    | "Group by education" >> beam.GroupByKey()
    | "Prepare Data" >> beam.ParDo(PrepareDataforTraining())
    | "Train Model" >> beam.ParDo(TrainModel())
    | "Save" >> fileio.WriteToFiles(path=known_args.output,
    sink=ModelSink()))
```


def custom_filter(element):
 return len(element) == 15 and '?' not in element \
 and ' Bachelors' in element or ' Masters' in element \
 or ' Doctorate' in element

```
class PrepareDataforTraining(beam.DoFn):
    def process(self, element, *args, **kwargs):
        key, values = element
    #Convert to dataframe
```

```
df = pd.DataFrame(values)
last_ix = len(df.columns) - 1
X, y = df.drop(last_ix, axis=1), df[last_ix]
```

```
# select categorical and numerical features
cat_ix = X.select_dtypes(include=['object', 'bool']).columns
num_ix = X.select_dtypes(include=['int64', 'float64']).columns
```

```
# label encode the target variable to have the classes 0 and 1
y = LabelEncoder().fit_transform(y)
```

```
yield (X, y, cat_ix, num_ix, key)
```


class TrainModel(beam.DoFn):

```
# one hot encode categorical, normalize numerical
ct = ColumnTransformer(steps)
```

```
# wrap the model in a pipeline
pipeline = Pipeline(steps=[('t', ct), ('m', DecisionTreeClassifier())])
pipeline.fit(X, y)
```

```
yield (key, pipeline)
```



```
class ModelSink(fileio.FileSink):
    def open(self, fh):
        self._fh = fh
```

```
def write(self, record):
    _, trained_model = record
    pickled_model = pickle.dumps(trained_model)
    self._fh.write(pickled_model)
```

```
def flush(self):
    self._fh.flush()
```

Q Extending the pipeline


```
class EvaluateModel(beam.DoFn):
  def __init__(self, model_uri):
   file = FileSystems.open(model_uri, 'rb')
    self.model = pickle.load(file)
  def process(self, element, *args, **kwargs):
    inputs, labels = element
    predictions = self.model.predict(inputs)
    accuracy = sklearn.metrics.accuracy_score(y_pred=predictions,
y_true=labels)
   f1 = sklearn.metrics.f1_score(y_pred=predictions, y_true=labels)
    recall = sklearn.metrics.recall_score(y_pred=predictions, y_true=labels)
   file = FileSystems.open(f'model_uri_metrics', 'web')
```

```
file.writelines([f'accuracy: {accuracy}', f'f1: {f1}', f'recall:
{recall}'])
```

igsquare How does this pipeline fit in the MLOps architecture? \Im

Q

Let's try out our model using the RunInference trasform

Q Bonus: Inference in Apache Beam

0

#

Q Summary

- Apache Beam is more and more becoming technology that can be used in advanced MLOps setups
- Per entity strategy has several advantages
 - Requires less powerful hardware
 - Faster training and inference
 - Easier to address bias
 - Easier to debug
- Apache Beam a perfect candidate for per entity training pipelines thanks to
 - Excellent for data preprocessing and preparation
 - Different runners depending on model requirements
 - \circ $\;$ Abstraction in ML libraries that make it easy to train a model

Jasper Van den Bossche

QUESTIONS?

https://www.linkedin.com/in/jasper-van-den-bossche/ https://github.com/jaxpr https://www.ml6.eu/

