

NYC 2023

Javier Ramírez
QuestDB

@supercoco9 / @j@chaos.social

Deduplicating And Analysing
Time-Series Data With

Apache Beam And QuestDB

About me: I like databases & open source
2022- today. Developer relations at an open source database vendor

● QuestDB, PostgreSQL, MongoDB, Timescale, InfluxDB, Apache Flink

2019-2022. Data & Analytics specialist at a cloud provider

● Amazon Aurora, Neptune, Athena, Timestream, DynamoDB, DocumentDB, Kinesis Data Streams, Kinesis Data
Analytics, Redshift, ElastiCache for Redis, QLDB, ElasticSearch, OpenSearch, Cassandra, Spark…

2013-2018. Data Engineer/Big Data & Analytics consultant

● PostgreSQL, Redis, Neo4j, Google BigQuery, BigTable, Google Cloud Spanner, Apache Spark, Apache BEAM,
Apache Flink, HBase, MongoDB, Presto

2006-2012 - Web developer

● MySQL, Redis, PostgreSQL, Sqlite, ElasticSearch

late nineties to 2005. Desktop/CGI/Servlets/ EJBs/CORBA

● MS Access, MySQL, Oracle, Sybase, Informix

As a student/hobbyist (late eighties - early nineties)

● Amsbase, DBase III, DBase IV, Foxpro, Microsoft Works, Informix

The pre-SQL years

The licensed SQL period

The libre and open SQL
revolution / The NoSQL
rise

The hadoop dark ages / The
python hegemony/ The cloud
database big migrations

The streaming era/ The
database as a service
singularity

The SQL revenge/ the
realtime database/the
embedded database

BEAM SUMMIT NYC 2023#

Agenda

● The problem of data duplication
● The problem of data duplication
● The problem of data duplication
● The problem of data duplication
● Behold: a dashboard!
● The many challenges of time-series data
● QuestDB to the rescue
● Down the rabbit hole of writing a custom BEAM Sink

○ Finding several needles on a documentation haystack
○ When I sadly discovered Python streaming support is meh
○ The unsung hero saves the day (again): implementing the Sink in Java

BEAM SUMMIT NYC 2023#

Duplication

WHY

BEAM SUMMIT NYC 2023#

Duplication

HOW

BEAM SUMMIT NYC 2023#

Duplication

WHAT

BEAM SUMMIT NYC 2023#

My lazy approach to choosing a database

If you can use only one
database for everything, go

with PostgreSQL*

* Or any other major and well supported RDBMS

BEAM SUMMIT NYC 2023#

Imagine…

a factory floor with 500 machines, or

a fleet with 500 vehicles, or

50 trains, with 10 cars each, or

500 users with a mobile phone, or

500 financial instruments generating tick data

…sending data every second

BEAM SUMMIT NYC 2023#

A conventional database’s nightmare

43,200,000 rows a day…….

302,400,000 rows a week….

1,314,144,000 rows a month

BEAM SUMMIT NYC 2023#

Timestamps are hard

BEAM SUMMIT NYC 2023#

Time-series analytics in a nutshell

Working with timestamped data
in a database is tricky*

* specially working with analytics of data changing over time or at a high rate

BEAM SUMMIT NYC 2023#

We’d like to be known for

● Performance
○ Better performance with smaller machines

● Developer Experience

● Proudly Open Source (Apache 2.0)

NYC 2023

A quick overview of some
interesting queries

BEAM SUMMIT NYC 2023#

Try it live on https://demo.questdb.io
WHERE … TIME RANGE

 SELECT * from trips WHERE pickup_datetime in '2018';

 SELECT * from trips WHERE pickup_datetime in '2018-06';

 SELECT * from trips WHERE pickup_datetime in '2018-06-21T23:59';

SELECT * from trips WHERE pickup_datetime in '2018;2M' LIMIT -10;

SELECT * from trips WHERE pickup_datetime in '2018;10s' LIMIT -10;

SELECT * from trips WHERE pickup_datetime in '2018;-3d' LIMIT -10;

SELECT * from trips WHERE pickup_datetime in '2018-06-21T23:59:58;4s;1d;7'

SELECT * from trips WHERE pickup_datetime in '2018-06-21T23:59:58;4s;-1d;7'

https://demo.questdb.io

BEAM SUMMIT NYC 2023#

Try it live on https://demo.questdb.ioSAMPLE BY

Aggregates data in homogeneous time chunks

SELECT

 timestamp,

 sum(price * amount) / sum(amount) AS vwap_price,

 sum(amount) AS volume

FROM trades

WHERE symbol = 'BTC-USD' AND timestamp > dateadd('d', -1, now())

SAMPLE BY 15m ALIGN TO CALENDAR;

SELECT timestamp, min(tempF),

max(tempF), avg(tempF)

FROM weather SAMPLE BY 1M;

https://demo.questdb.io

BEAM SUMMIT NYC 2023#

Try it live on https://demo.questdb.ioSAMPLE BY … FILL

Can fill missing time chunks using different strategies (NULL, constant, LINEAR, PREVious value)

SELECT

 timestamp,

 sum(price * amount) / sum(amount) AS vwap_price,

 sum(amount) AS volume

FROM trades

WHERE symbol = 'BTC-USD' AND timestamp > dateadd('d', -1, now())

SAMPLE BY 1s FILL(NULL) ALIGN TO CALENDAR;

https://demo.questdb.io

BEAM SUMMIT NYC 2023#

Try it live on https://demo.questdb.ioLATEST ON …

PARTITION BY …

Retrieves the latest entry by timestamp for a given key or combination of keys, for scenarios where
multiple time series are stored in the same table.

SELECT * FROM trades

WHERE symbol in ('BTC-USD', 'ETH-USD')

LATEST ON timestamp PARTITION BY symbol, side;

https://demo.questdb.io

BEAM SUMMIT NYC 2023#

Try it live on https://demo.questdb.ioASOF JOIN / LT JOIN

SPLICE JOIN

ASOF JOIN joins two different time-series measured. For each row in the first time-series, the ASOF
JOIN takes from the second time-series a timestamp that meets both of the following criteria:

● The timestamp is the closest to the first timestamp.
● The timestamp is strictly prior or equal to the first timestamp.

WITH trips2018 AS (

 SELECT * from trips WHERE pickup_datetime in '2016'

)

SELECT pickup_datetime, fare_amount, tempF, windDir

FROM trips2018

ASOF JOIN weather;

https://demo.questdb.io

BEAM SUMMIT NYC 2023#

Building a Sink connector

QuestDB cannot do in-stream
deduplications.

Apache BEAM can help

BEAM SUMMIT NYC 2023#

The Python QuestDB Sink

● WriteToQuestDB(PTransform) class
○ Receives the args you need to pass to the sink
○ Implements the expand method, which receives the PCollection then invokes

ParDo to _WriteTOQuestDBFn
○

● _WriteToQuestDBFn(DoFn) class
○ Instantiates _QuestDBSink on start_bundle
○ Flushes/releases _QuestDBSink on finish_bundle
○ Implements display_data to show info on the UI
○ Calls to _QuestDBSink.write on the process method
○

● _QuestDBSink class
○ Deals with the QuestDB connection itself

BEAM SUMMIT NYC 2023#

The Python QuestDB Sink

https://github.com/javier/questdb-beam/tree/main/python

pcoll | WriteToQuestDB(table,
symbols=[list_of_symbols],
columns=[list_of_columns],

 host=host,
port=port,
batch_size=optionalSizeOfBatch,
tls=optionalBoolean,
auth=optionalAuthDict)

https://github.com/javier/questdb-beam/tree/main/python

BEAM SUMMIT NYC 2023#

The Java QuestDB Sink

● QuestDbIO.Write class, extends PTransform
○ Receives the args you need to pass to the sink
○ Uses @AutoValue to generate classes “magically”
○ Implements the expand method, which receives the PCollection then invokes

ParDo to QuestDbIO.Write.WriteFn (with optional deduplication)
○ Implements populateDisplayData

● QuestDbIO.Write.WriteFn class, extends DoFn
○ Instantiates QuestDBSender on start_bundle
○ Flushes/closes QuestDBSender on finish_bundle
○ Parses/sends the QuestDbRow to QuestDB on the process method

BEAM SUMMIT NYC 2023#

Where the magic happens
https://github.com/javier/questdb-beam/blob/main/java/src/main/java/org/apache/beam/sdk/io/questdb/QuestDbIO.java

 keydAndWindowed = (PCollection) input.apply(WithKeys.of(new SerializableFunction<QuestDbRow, String>() {
 @Override
 public String apply(QuestDbRow r) {
 return String.valueOf(r.hashCode());
 }
 }));

 PCollection windowedItems = (PCollection)
 keydAndWindowed.apply(
 Window.
 <KV<String, String>>into(
 Sessions.
 withGapDuration(
 Duration.standardSeconds(deduplicationDurationMillis())
)
)
);

 PCollection<QuestDbRow> uniqueRows = (PCollection<QuestDbRow>)
 ((PCollection) keydAndWindowed.apply(
 Deduplicate.keyedValues()
)
).apply(Values.create());

https://github.com/javier/questdb-beam/blob/main/java/src/main/java/org/apache/beam/sdk/io/questdb/QuestDbIO.java

BEAM SUMMIT NYC 2023#

The Java QuestDB Sink

https://github.com/javier/questdb-beam/tree/main/java

// pcoll needs to be of type QuestDbRow

pcoll.apply(ParDo.of(new LineToMapFn()));
 parsedLines.apply(QuestDbIO.write()
 .withUri("your-instance-host.questdb.com:YOUR_PORT")
 .withTable("beam_demo")
 .withDeduplicationEnabled(true)
 .withDeduplicationByValue(false)
 .withDeduplicationDurationMillis(5L)
 .withSSLEnabled(true)
 .withAuthEnabled(true)
 .withAuthUser("admin")
 .withAuthToken("verySecretToken")

https://github.com/javier/questdb-beam/tree/main/java

https://github.com/questdb/questdb

https://cloud.questdb.com

https://github.com/questdb/questdb
https://cloud.questdb.com

NYC 2023

QUESTIONS?
Javier Ramirez
@supercoco9

https://github.com/javier/questdb-beam
https://github.com/javier/questdb-quickstart

https://github.com/questdb/questdb
https://demo.questdb.io

https://cloud.questdb.com

Thanks!

https://github.com/javier/questdb-beam
https://github.com/javier/questdb-quickstart
https://github.com/questdb/questdb
https://demo.questdb.io
https://cloud.questdb.com

