Large Scale Data processing with TFX
Agenda

- Background and Introduction
 - Motivation
- Why TFX?
 - TFX Components and Apache Beam
- How does using TFX apply to Apache Beam?
 - Is choosing Apache Beam executor necessary?
 - Dataflow Runner and its advantages
- Going deeper into the use case
- Questions
Introducing myself a little more

- Data Engineer with the DoIT team.
- Big fan of Apache Beam
- Interests in Machine Learning Ops
 - Machine Learning Frameworks and libraries including Tensorflow Extended.

Nonetheless, I do not consider myself an ML expert.

DoIT is a Global Organization that is a Google Cloud Partner

- Offers teams to leverage and harness the benefits of Public Clouds
 - Provide technology and cloud expertise to help reduce cloud costs and boost engineering productivity
 - Cloud support is offered at zero cost to Customers.
DoIT is a Global Organization that is a Google Cloud Partner

- Offers teams to leverage and harness the benefits of Public Clouds
 - Provide technology and cloud expertise to help reduce cloud costs and boost engineering productivity
 - Cloud support is offered at zero cost to Customers.
 - Introducing the doit Console
doit Console

Spend History
- [GCP Lens] Google cloud cost history

Cost by Top Projects
- [GCP Lens] breakdown of costs by top 10 GCP projects

BigQuery Lens highlights inefficiencies in your BigQuery usage.

Recommendations
- You can save up to $629,591.50 (Last 30 days)

- **Your Recommendations**
 - Switch to monthly flat rate plan
 - Savings(%): 89.0
 - Savings: $487,469.94
 - Limit query jobs
 - Savings(%): 25.8
 - Savings: $141,506.85
 - Back up and remove Unused Tables
 - Savings(%): 0.1
 - Savings: $349.05
 - Enforce Partition Fields
 - Savings(%): 0.0
 - Savings: $256.01
 - Partition your tables
 - Savings(%): 0.0
 - Savings: $9.66

BEAM SUMMIT NYC 2023
Recent PSA from the Google Cloud team about the changes to the pricing and Compute Model of BigQuery

- Introduction of new BigQuery Editions
- Flat-rate pricing and Flex slot purchased to be disabled for all users

These changes are set to apply to both the Compute and Storage in BigQuery.

The changes would apply starting July 5th

DoiT pricing recommendation

BigQuery Editions Pricing Analysis Tool

This analysis tool will consume your BigQuery usage patterns (both compute and storage) and then generate an analysis of that data to give an estimate of spend with Google’s new pricing models that go into effect on July 5, 2023.

Important Notes

Note this tool is doing an estimation of the BigQuery usage for a project with known historical values from your BigQuery usage, there may be additional factors, charges, or changes that are yet to come that are not included in the output of this tool. Thus this tool should only be used as general guidance and not as an absolute source of truth for charges with these new billing models.

Note due to limitations with Sheets this can only query a single project at a time and not a whole organization. Making copies of this and running against separate projects is the easiest method to do this for an entire organization.

IAM Notes

This tool will run queries against the INFORMATION_SCHEMA views inside of a project. It is recommended that the user that has opened up this sheet have at least the BigQuery Data Editor role for the project that will be used for this analysis.

How to Use This Tool

After running the below instructions numerous calculations on your usage are performed to calculate estimates on BigQuery compute and storage costs for multiple scenarios with Editions, Compressed Storage, and On-Demand pricing models. These estimates can be used to help determine what pricing may look like after July 5, 2023 (or before if opted into early) when this pricing goes into effect.

Instructions

The instructions below are a bit tedious, but unfortunately there is not an easy way to pull data from BigQuery into a format that is usable by both technical BigQuery users and the non-technical users that would need to consume this data to aid in making decisions based upon it. So a balance had to be made which was a Google Sheet showing this data and due to limitations in Sheets and BigQuery integration there are more steps than myself as the author would have liked and if you are able to discover a way to automate this without using App Scripts (that requires more permissions and many organizations restrict its use) please let me know and I will implement it on here.

1. Navigate to the `3Q Compute Data` sheet at the bottom of this page.
2. Click the "Connection Settings" link in the upper right corner (has a sprocket icon next to it).

Calc slot usage & Compute price

Approximate Slot Usage Over Time

Editions Usage

| No Commitments Purchased and Using Compressed Storage (Pay-As-You-Go) |
|------------------|------------------|------------------|------------------|
| | Current Usage | Existing Flat-Rate Costs at Uncompressed Storage | Difference Between Editions and Flat-Rate |
| Standard Edition | $172.82 | $2,000.03 | -$1,827.21 |
| Enterprise Edition | $259.22 | $2,000.03 | -$1,740.81 |
| Enterprise Plus Edition | $432.02 | $2,000.03 | -$1,568.00 |

No Commitments Purchased and Using Uncompressed Storage

<table>
<thead>
<tr>
<th>Editions Estimates with Commitments and Compressed Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Edition</td>
</tr>
<tr>
<td>Enterprise Edition</td>
</tr>
<tr>
<td>Enterprise Plus Edition</td>
</tr>
</tbody>
</table>

Editions Estimates with Commitments and Compressed Storage

<table>
<thead>
<tr>
<th>Editions Usage</th>
<th>Current Usage</th>
<th>Existing Flat-Rate Costs at Uncompressed Storage</th>
<th>Difference Between Editions and Flat-Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Edition 1 Year</td>
<td>$259.22</td>
<td>$2,000.03</td>
<td>-$1,740.81</td>
</tr>
<tr>
<td>1 Year Commitment Baseline Count</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Year Commitment Baseline</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoscaling Slots</td>
<td>$259.22</td>
<td>$2,000.03</td>
<td>-$1,740.81</td>
</tr>
<tr>
<td>Enterprise Edition 3 Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Year Commitment Baseline Count</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Year Commitment Baseline</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoscaling Slots</td>
<td>$259.22</td>
<td>$2,000.03</td>
<td>-$1,740.81</td>
</tr>
</tbody>
</table>
What is TFX and Why TFX

❖ TFX is a Google-production-scale machine learning (ML) platform, which provides a toolkit that is based on TensorFlow for building ML pipelines.

❖ Tensorflow Extended (TFX) is designed to build end-to-end machine learning pipelines.
 ➢ Data Ingestion
 ➢ Data preparation
 ■ Data Exploration
 ■ Data transformation
 ■ Feature Engineering
 ➢ Data Segregation
 ➢ Model training
 ➢ Model evaluation
 ➢ Model deployment and Monitoring
TFX Production Components

Data ingestion → Data validation → Feature engineering → Train model → Validate model → Push if good → Serve model

Libraries:
- Data ingestion
- TensorFlow Data Validation
- TensorFlow Transform
- ML Model
- TensorFlow Model Analysis
- Validation outcomes
- TensorFlow Serving

Components:
- ExampleGen
- StatisticsGen
- SchemaGen
- Transform
- Trainer
- Evaluator
- Pusher
- Model server
- Example validator
- Tuner
- InfraValidator
- Bulk inferrer
TFX Components use Apache Beam for distributed pipeline processing

- Internally translated into an Apache Beam pipeline
- Creates a directly acyclic graph of computation, which is then sent to the Executor (or Runner, e.g., Dataflow Runner)
- Executor then spins up workers to handle the work
- The results are then sent back to the TFX Components
Apache Beam

- unified programming model to execute data processing pipelines, including ETL, batch and stream processing

- Building batch and Streaming Pipelines in the Language of Choice
 - Providing various language-specific SDK
 - Java SDK
 - Python SDK
 - Go SDK

- Allows execution of built pipelines to be run on different execution environments
 - Apache Spark
 - Flink
 - Dataflow Runner
 - Direct Runner
Apache Beam Runner: Dataflow

- Fully Managed Environment
- There is a Monitoring UI
- Easy Scalability
- Configuration
 Dataset is stored in BigQuery.

The data are pulled generally from various BigQuery Datasets on different projects, estimated across the different BigQuery editions.

```sql
SELECT job_id,
       statement_type,
       EXTRACT (DATE FROM creation_time) AS EXECUTION_DATE,
       EXTRACT (HOUR FROM creation_time) AS EXECUTION_HOUR,
       EXTRACT (MINUTE FROM creation_time) AS EXECUTION_MIN,
       user_email AS USER,
       project_id as PROJECT_ID,
       start_time,
       end_time,
       reservation_id,
       total_slot_ms,
       total_bytes_processed,
       SAFE_DIVIDE(total_slot_ms, TIMESTAMP_DIFF(end_time, start_time, MILLISECOND)) SLOT_USAGE,
       TIMESTAMP_DIFF(end_time, start_time, MILLISECOND) / 1000 TOTAL_DURATION_IN_MS,
       (total_bytes_processed) * 1024 / 1024 TOTAL_PROCESSED_GB,
       case
         when reservation_id is null then total_bytes_billed else 0
       end) / 1024 / 1024 TOTAL_BILLED_GB,
       cache_hit
FROM 'region-us.INFORMATION_SCHEMA.JOBS_BY_PROJECT'
WHERE state='DONE'
AND statement_type in ('SELECT', 'MERGE', 'CREATE_TABLE_AS_SELECT')
AND creation_time BETWEEN TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 90 DAY)
AND CURRENT_TIMESTAMP())
Consideration for the needed data was based on the information on the GCP documentation about the BigQuery editions. Each of the BigQuery Editions are billed per slotHour.
More Details about my use-case

- My Pipeline implementation was done on a notebook in a Google Cloud VertexAI user-managed Instance
  - Google Cloud Vertex Pipelines helps to easily automate, monitor, and govern ML systems by orchestrating your ML workflow in a serverless manner
  - It integrates easily with BigQuery and Dataflow
  - Also, no need to set metadata_connection_config, which is normally used to locate ML Metadata database. However, as Vertex Pipelines uses a managed metadata service – Hence, there is no need to specify this parameter.

- TFX requires python up to 3.9
  - [https://github.com/tensorflow/tfx/issues/5897](https://github.com/tensorflow/tfx/issues/5897)
  - Short term fix is to revert to Python 3.8.3
    - iPyKernel – IPython Kernel for Jupyter
More Details about my use-case

❖ Specify paths to the pipeline artifacts, python module, etc

```python
GOOGLE_CLOUD_PROJECT = 'project_name'
GOOGLE_CLOUD_PROJECT_NUMBER = 'project_number' # --- ENTER THIS
GOOGLE_CLOUD_REGION = 'us-west1' # --- ENTER THIS
GCS_BUCKET_NAME = 'bucket_name' # --- ENTER THIS

if not (GOOGLE_CLOUD_PROJECT and GOOGLE_CLOUD_PROJECT_NUMBER and GOOGLE_CLOUD_REGION and GCS_BUCKET_NAME):
 from absl import logging
 logging.error('Please set all required parameters.

PIPELINE_NAME = 'bigquery-editions'

Path to various pipeline artifact.
PIPELINE_ROOT = 'gs:///{}/pipeline_root/{}.format(
 GCS_BUCKET_NAME, PIPELINE_NAME)

Paths for users' Python module.
MODULE_ROOT = 'gs:///{}/pipeline_module/{}.format(
 GCS_BUCKET_NAME, PIPELINE_NAME)

Paths for users' data.
DATA_ROOT = 'gs:///{}/data/{}.format(GCS_BUCKET_NAME, PIPELINE_NAME)

This is the path where your model will be pushed for serving.
SERVING_MODEL_DIR = 'gs:///{}/serving_model/{}.format(
 GCS_BUCKET_NAME, PIPELINE_NAME)

print('PIPELINE_ROOT: {}'.format(PIPELINE_ROOT))

QUERY = "SELECT * FROM `"...
_trainer_module_file = 'SummitTFX.py'
```
More Details about my use-case

- With the TFX libraries, it was easy to use the ExampleGen to pull the data from BigQuery.

```python
from typing import List, Optional
import tensorflow as tf
from tfx import v1 as tfx

def _create_pipeline(pipeline_name: str, pipeline_root: str, query: str,
 module_file: str, serving_model_dir: str,
 beam_pipeline_args: Optional[List[str]],
) -> tfx.dsl.Pipeline:
 """Creates a TFX pipeline using BigQuery."""

 # NEW: Query data in BigQuery as a data source.
 example_gen = tfx.extensions.google_cloud_big_query.BigQueryExampleGen(query=query)
```

- Similarly, it was easy to use other libraries.
  - Used the tfx components: statisticsGen, SchemaGen and Anomaly detections
More Details about my use-case

```python
NEW: Computes statistics over data for visualization and schema generation.
statistics_gen = tfx.components.StatisticsGen(
 examples=example_gen.outputs['examples'])

generate schema
schema_gen= tfx.components.SchemaGen(statistics=statistics_gen.outputs['statistics'])

Identify anomalies
validator = tfx.components.ExampleValidator(statistics=statistics_gen.outputs['statistics'],
 schema=schema_gen.outputs['schema'])
```
import os
import tensorflow as tf
googfile_names = tf.io.gfile.glob(os.path.join(STATS_URL, 'Split-*'))
names = map(os.path.basename, directories)
splits = (name: os.path.join(directory, 'FeatureStats.pb') for name, directory in zip(names, directories))
print(splits)

lhs_split = 'Split-train'
rhs_split = 'Split-eval'

tfdv.visualize_statistics(
    lhs_statistics=tfdv.load_stats_binary(splits[lhs_split]),
    rhs_statistics=tfdv.load_stats_binary(splits[rhs_split])
)

{lhs_split: StatisticsGen_...}
More Details about my use-case

```python
import os
import tensorflow_data_validation as tfdv

schema = tfdv.load_schema_text(os.path.join(SCHEMA_URI, 'schema.pbtxt'))
tfdv.display_schema(schema)
```

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Type</th>
<th>Presence</th>
<th>Valency</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Label_Edition_Type'</td>
<td>INT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'SLOT_USAGE'</td>
<td>FLOAT</td>
<td>optional</td>
<td>single</td>
<td>-</td>
</tr>
<tr>
<td>'SlotHR'</td>
<td>FLOAT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'StandardNoCommit'</td>
<td>FLOAT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'TOTAL_BILLED_GB'</td>
<td>FLOAT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'TOTAL_DURATION_IN_MS'</td>
<td>FLOAT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'enterprisePrice3YRCommit'</td>
<td>FLOAT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'onDemand'</td>
<td>FLOAT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'reservation_id'</td>
<td>INT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'total_bytes_processed____'</td>
<td>INT</td>
<td>required</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>'total_slot_ms'</td>
<td>INT</td>
<td>optional</td>
<td>single</td>
<td>-</td>
</tr>
</tbody>
</table>

```python
import os
import tensorflow_data_validation as tfdv

ANOMALIES_URI = "https://storage.googleapis.com/cloud-tpu-projects/jupyter/20230605023331/ExampleValidator_7041505560742592512 anomalies = tfdv.load_anomalies_text(ANOMALIES_URI)
tfdv.display_anomalies(anomalies)
```
# Uses user-provided Python function that trains a model.

trainer = tfx.components.Trainer(
    module_file=module_file,
    examples=x.example_gen.outputs['examples'],
    train_args=tfx.proto.TrainArgs(num_steps=100),
    eval_args=tfx.proto.EvalArgs(num_steps=5))

# Pushes the model to a file destination.

pusher = tfx.components.Pusher(
    model=trainer.outputs['model'],
    push_destination=tfx.proto.PushDestination(
        filesystem=tfx.proto.PushDestination.Filesystem(
            base_directory=serving_model_dir)))

components = [
    example_gen,
    statistics_gen,
    schema_gen,
    validator,
    trainer,
    pusher,
More Details about my use-case
More Details about my use-case
import tensorflow_model_analysis as tfma

eval_config = tfma.EvalConfig(
    model_specs=[tfma.ModelSpec(label_key='rating')],
    slicing_specs=[tfma.SlicingSpec()],
    metrics_specs=[
        tfma.MetricsSpec(metrics=[
            tfma.MetricConfig(class_name='ExampleCount'),
            tfma.MetricConfig(class_name='AUC'),
            tfma.MetricConfig(class_name='FalsePositives'),
            tfma.MetricConfig(class_name='TruePositives'),
            tfma.MetricConfig(class_name='FalseNegatives'),
            tfma.MetricConfig(class_name='TrueNegatives'),
            tfma.MetricConfig(class_name='BinaryAccuracy'),
            threshold=tfma.MetricThreshold(
                value_threshold=tfma.GenericValueThreshold(
                    lower_bound={'value':0.5}),
                change_threshold=tfma.GenericChangeThreshold(
                    direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                    absolute={'value':0.0001}))
        ])
    ])

from tfx.components import Evaluator
evaluator = Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    baseline_model= model_resolver.outputs['model'],
    eval_config=eval_config)
context.run(evaluator)
More Details about my use-case

```python
Visualize the evaluation results
eval_result = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(eval_result)
tfma.view.render_slicing_metrics(tfma_result)
```

```python
Print validation results

eval_result = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(eval_result))

validation_ok: true
validation_details {
 slicing_details {
 slicing_spec {
 }
 num_matching_slices: 1
 }
}
```
Special Thanks

➢ Steeve Dominique
➢ Gurkomal Singh Rao
➢ Jared Burns
➢ Sayle Matthews
➢ Asad Khan
QUESTIONS?

Maybe some contact info here?
   Twitter
   Linkedin
   Github
   Or whatever you want