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Background and Introduction
o Motivation
Why TFX?
o TFX Components and Apache Beam

How does using TFX apply to Apache Beam?

o Is choosing Apache Beaom executor necessary?

o Dataflow Runner and its advantages
Going deeper into the use case

Questions




BACKGROUND AND INTRODUCTION

% Introducing myself a little more
> Data Engineer with the DolT team.
> Big fan of Apache Beam
> Interests in Machine Learning Ops
m  Machine Learning Frameworks and libraries including Tensorflow Extended.

Nonetheless, | do not consider myself an ML expert.

RY

» DolT is a Global Organization that is a Google Cloud Partner
> Offers teams to leverage and harness the benefits of Public Clouds
m Provide technology and cloud expertise to help reduce cloud costs and
boost engineering productivity
m Cloud support is offered at zero cost to Customers.
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Cost by Top Service
[GCP Lens) breakdown of costs by GCP service
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GCP Lens

Cost by Top Projects BigQuery Lens highlights inefficiencies in your BigQuery usage.
[GCP Lens] breakdown of costs by top 10 GCP projects
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Target task

Recent PSA from the Google Cloud team about the changes to the
the pricing and Compute Model of BigQuery

> Introduction of new BigQuery Editions
> flat-rate pricing and Flex slot purchased to be disabled for all users

These changes are set to apply to both the Compute and Storage

in BigQuery.

The changes would apply starting July Sth
https://www.doit.com/bigquery-editions-and-what-you-need-to-kno
w/




DoiT pricing recommendation

M .ke a copy of this to start editing, also note it is per-project so you might need to make a copy per project.

.
do ‘b BigQuery Editions Pricing Analysis Tool

This analysis tool will consume your BigQuery usage pattems (both compute and storage) and then generate an
analysis of that data to give an estimate of spend with Google's new pricing models that go into effect on July 5, 2023.

Important Notes

Note this tool is doing an estimation of the BigQuery usage for a project with known historical values from your
BigQuery usage, there may be additional factors, charges, or changes that are yet to come that are not included in the
output of this tool. Thus this tool should only be used as general guidance and not as an absolute source of truth for
charges with these new billing models.

Note due to limitations with Sheets this can only query a single project at a time and not a whole organization. Making
copies of this and running against separate projects is the easiest method to do this for an entire organization

|IAM Notes

This tool will be running queries against the INFORMATION_SCHEMA views inside of a project. It is recommended that
the user that has opened up this Sheet have at least the BigQuery Data Editor role for the project that will be used for
this analysis

How to Use This Tool

After running the below instructions numerous calculations on your usage are performed to calculate estimates on
BigQuery compute and storage costs for multiple scenarios with Editions, Compressed Storage, and On-Demand
pricing models. These estimates can be used to help determine what pricing may look like after July 5, 2023 (or before
if opted into starting early) when this pricing goes into effect.

Instructions

The instructions below are a bit tedious, but unfortunately there is not an easy way to pull data from BigQuery into a
format that is usable by both technical BigQuery users and the non-technical users that would need to consume this
data to assist in making decisions based upon it. So a balance had to be made which was a Google Sheet showing this
data and due to limitations in Sheets and BigQuery integration there are more steps than myself as the author would
have liked and if you are able to discover a way to automate this without using App Scripts (that requires more
permissions and many organizations restrict its use) please let me know and | will implement it on here.

1. Navigate to the BQ Compute Data sheet at the bottom of this page
2. Click the "Connection Settings” link in the upper right comer (has a sprocket icon next to it)

+ = Instructions and Guidance ¥  Compute+Storage ¥  Compute Calculations ¥  Storage Calculations ¥  Slot Usage Chart

Calc slot usage & Compute price

Approximate Slot Usage Over Time
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Editions Usage

No and Using C

Current Usage
Standard Edition $172.82
Enterprise Edition $259.22
Enterprise Plus Edition $432.02

No C; and Using L

Current Usage
Standard Edition $172.83
Enterprise Edition $259.23
Enterprise Plus Edition $432.03

with C

Current Usage

Enterprise Edition 1 Year

1 Year Commitment Baseline Count o

1 Year Commitment Baseline $0.00

Autoscaling Slots $259.20
$259.22

Enterprise Edition 3 Year

3 Year Commitment Baseline Count o
3 Year Commitment Baseline $0.00
Autoscaling Slots $259.20
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Existing Flat-Rate Costs
W/ Uncompressed
Storage Difference Between Editions and Flat-Rate
$2,000.03 -$1,827.21
$2,000.03 -$1,740.81

$2,000.03 -$1,568.01

Existing Flat-Rate Costs
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Existing Flat-Rate Costs
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What is TFX and Why TFX

TFX is a Google-production-scale machine learning (ML) platform,
which provides a toolkit that is based on TensorFlow for building
ML pipelines.

Tensorflow Extended (TFX) is designed to build end-to-end machine
learning pipelines.

> Data Ingestion
> Data preparation
m Data Exploration
m Datao transformation
m Feature Engineering
Data Segregation
Model training
Model evaluation
Model deployment and Monitoring




TFX Production Components

Data Data Feature Train Validate Push if Serve
ingestion validation engineering model model good model

Librariek Data TensorFlow TensorFlow ML Model TensorFlow Validation TensorFlow
ingestion Data Validation Transform Model Analysis outcomes Serving

Components BSE] /el StatisticsGen

A/

SchemaGen Trainer Evaluator m Model server

Example InfraValidator Bulk inferrer
validator




TFX Components
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TFX Components and Apache Beam

% TFX Components use Apache Beam for distributed pipeline

processing

> Internally translated into an Apache Beam pipeline

> creates a Directly acyclic graph of Computation, which is then sent to the
Executor[or Runner, eg Dataflow Runner]

Executor then spins up workers to handle the work
The results are then sent back to the TFX Components




Apache Beam

unified programming model to execute data processing pipelines,
including ETL, batch and stream processing
Building batch and Streaming Pipelines in the Language of Choice

> Providing various language-specific SDK
m Jova SDK
m Python SDK
m Go SDK

Allows execution of built pipelines to be run on different execution

environments

> Apache Spark
> Flink

> Dataflow Runner
> Direct Runner




Apache Beam Runner: Dataflow

Fully Monaged Environment

There is a Monitoring Ul

Easy Scalability

Configuration




More Details about my use-case

% Dataoset is stored in BigQuery.

> The data are pulled generally from various BigQuery Datasets on different
projects, estimated across the different BigQuery editions.

SELECT

job_id,

statement_type,

EXTRACT (DATE

FROM

creation_time) AS EXECUTION_DATE,

EXTRACT (HOUR

FROM

creation_time) AS EXECUTION_HOUR,

EXTRACT (MINUTE

FROM

creation_time) AS EXECUTION_MIN,

user_email AS USER,

project_id as PROJECT,)|

start_time,

end_time,

reservation_id,

total_slot_ms,

total_bytes_processed,

SAFE_DIVIDE(total_slot_ms, TIMESTAMP_DIFF(end_time,start_time,MILLISECOND)) SLOT_USAGE,
TIMESTAMP_DIFF(end_time,start_time,MILLISECOND) / 1000 TOTAL_DURATION_IN_MS,
(total_bytes_processed)/1024/1024/1024 TOTAL_PROCESSED_GB,

(case

when reservation_id is null then total_bytes_billed else O
end)/1024/1024/1024 TOTAL_BILLED_GB,

cache_hit

FROM

“region-us.INFORMATION_SCHEMA.JOBS_BY_PROJECT"

WHERE

state="DONE’

AND statement_type in (‘SELECT', 'MERGE','CREATE_TABLE_AS_SELECT')
AND

creation_time BETWEEN TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 90 DAY)
AND CURRENT_TIMESTAMP()




More Details about my use-case

% Consideration for the needed data was based on the information

on the GCP documentation about the BigQuery editions.
> Each of the BigQuery Editions are billed per slotHour
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More Details about my use-case

My Pipeline implementation was done on a notebook in a Google

Cloud VertexAl user-managed Instance

> Google Cloud Vertex Pipelines helps to easily automate, monitor, and govern ML
systems by orchestrating your ML workflow in a serverless manner
It integrates easily with BigQuery and Dataflow
Also, no need to set metadata_connection_config, which is normally used to
locate ML Metadata database. However, as Vertex Pipelines uses a managed
metadata service - Hence, there is no need to specify this parameter.

TFX requires python up to 3.9

> https://qithub.com/tensorflow/tfx/issues/S5897
>  Short term fix is to revert to Python 3.8.3
m iPyKernel - IPython Kernel for Jupyter



https://github.com/tensorflow/tfx/issues/5897

More Details about my use-case

GOOGLE_CLOUD_PROJECT = ' # <——— ENTER THIS
GOOGLE_CLOUD_PROJECT NUMBER = ' # <——— ENTER THIS
GOOGLE_CLOUD_REGION = 'us-westl' # <——— ENTER THIS
GCS_BUCKET NAME = ' # <——— ENTER THIS

if not (GOOGLE_CLOUD_PROJECT and GOOGLE_CLOUD_PROJECT_NUMBER and GOOGLE_CLOUD_REGION and GCS_BUCKET_ NAME) :
from absl import logging
logging.error('Please set all required parameters.')

PIPELINE_NAME = 'bigquery-editions’

# Path to various pipeline artifact.

PIPELINE_ROOT = 'gs://{}/pipeline_root/{}'.format(
GCS_BUCKET_ NAME, PIPELINE_ NAME)

# Paths for users' Python module.

MODULE_ROOT = 'gs://{}/pipeline module/{}'.format(
GCS__BUCKET_NAME, PIPELINE_ NAME)

# Paths for users' data.
DATA_ROOT = 'gs://{}/data/{}'.format(GCS_BUCKET NAME, PIPELINE_NAME)

# This is the path where your model will be pushed for serving.

SERVING_MODEL _DIR = 'gs://{}/serving model/{}'.format(
GCS_BUCKET_NAME, PIPELINE_NAME)

print( 'PIPELINE_ROOT: {}'.format(PIPELINE_ ROOT))

QUERY = "SELECT * FROM s

_trainer module_file = 'SummitTFX.py'

BEAM SUMMIT NYC 2023




More Details about my use-case

% With the TFX libraries, it was easy to use the ExampleGen to pull
the data from BigQuery.

from tfx import vl as tfx

def _create pipeline(pipeline name: str, pipeline_root: str, query: str,
module_file: str, serving model dir: str,

beam pipeline args: Optional[List[str]],
) —> tfx.dsl.Pipeline:

"""Creates a TFX pipeline using BigQuery."""

data in BigQuery as a data source.

example_gen tfx.extensions.google_cloud_big_query.BigQueryExampleGen (query=query)

< Similarly, it was easy to use other libraries.
> Used the tfx components: statisticsGen, SchemaGen and Anomaly detections

BEAM SUMMIT NYC 2023



More Details about my use-case

# NEW: Computes statistics over data for visualization and schema generation.
statistics_gen = tfx.components.StatisticsGen(
examples=example_gen.outputs['examples'])

# generate schema|
schema_gen= tfx.components.SchemaGen(statistics=statistics_gen.outputs['statistics'])

# Identify anomalies
validator = tfx.components.ExampleValidator(statistics=statistics_gen.outputs['statistics'],
schema=schema_gen.outputs['schema'])




More Details about my use-case

import os

import tensorflow as tf

import tensorflow data_validation as tfdv

STATS_URI = ]

directories = tf.io.gfile.glob(os.path.join(STATS_URI, 'Split—x"'))
names = map(os.path.basename, directories)

splits = {name: os.path.join(directory, 'FeatureStats.pb') for name, directory in zip(names, directories)}

20230605023331/StatisticsGen_-7946473999146418176/statist

print(splits)

lhs_split
rhs_split

= 'Split—train*

= 'Split-eval'

tfdv.visualize_statistics(
lhs_statistics=tfdv.load_stats_binary(splits[lhs_splitl),
lhs_name=1lhs_split,
rhs_statistics=tfdv.load_stats_binary(splits[rhs_splitl),
rhs_name=rhs_split

espuit—evat : | - 0 30605023331 /Stat ist icsGen_~7946473999146418176/stat
istics/Split—-eval/FeatureStats.pb', 'Split-train': ' 20230605023331/Sta
tisticsGen_-7946473999146418176/statistics/Split-train/FeatureStats.pb’

Sort by
Feature order > [ Reverse order  Feature search (regex enabled)

Features: int(4) float(9)

[ split-train Split-eval

Numeric Features (13) Chart to show
Standard -
count missing std dev i median
Label____Edition_Type
674 0% 0.98 47.92% 2
324 0% : 0.97  45.37% 2 0

mMax [iog Cexpand Cpercentages

SLOT_USAGE
667 1.04% 1,475.72
322 0.62% . g 1,167.79

SlotHR
674 9.5%
324 9.88%

0.000004 0.000012

StandardNoCommit




More Details about my use-case

import os

import tensorflow_data_validation as tfdv

SCHEMA_URI = '

schema = tfdv.load_schema_text(os.path.join(SCHEMA_URI, 'schema.pbtxt'))
tfdv.display_schema(schema)

Type Presence Valency Domain

Feature name
'Label___Edition_Type' required
'SLOT_USAGE' optional
'SlotHR" required
'StandardNoCommit' required
'TOTAL_BILLED_GB' required
'"TOTAL_DURATION_IN_MS' required
‘enterprisePricelTYRCommit' required
'enterprisePrice3YRCommit' required
'enterprisePriceNoCommit' required
‘onDemand’ required
'reservation_id' required
'total_bytes_processed___' required

'total_slot_ms' optional

import os

import tensorflow_data_validation as tfdv

ANOMALIES_URI = "

anomalies = tfdv.load_anomalies_text(ANOMALIES_URI)
i i ies)

0230605023331/SchemaGen_1276898037708357632/schema"

20230605023331/ExampleValidator_7041505560742592512,

No anomalies found.




More Details about my use-case

# Uses user—provided Python function that trains a model.

trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))

# Pushes the model to a file destination.
pusher = tfx.components.Pusher(
model=trainer.outputs['model’'],
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))

components = [
example_gen,
statistics_gen,
schema_gen,
validator,
trainer,
pusher,




More Details about my use-case

[20]: # docs_infra: no_execute
import os

# We need to pass some GCP related configs to BigQuery. This is currently done
# using ‘beam_pipeline_args' parameter.

#DIRECT_RUNNER = [

# '——project="' + GOOGLE_CLOUD_PROJECT,

# '—temp_location=' + os.path.join('gs://', GCS_BUCKET_NAME,

# 4}

DATAFLOW_RUNNER = [
'—runner=DataflowRunner',
——project="' + GOOGLE_CLOUD_PROJECT,
——job_name=unique-job-name',
——region=us-westl',
——temp_location=' + os.path.join('gs://', GCS_BUCKET_NAME, 'tmp'),

1

PIPELINE_DEFINITION_FILE = PIPELINE_NAME + '_pipeline.json’

runner = tfx.orchestration.experimental.KubeflowV2DagRunner(
config=tfx.orchestration.experimental.KubeflowV2DagRunnerConfig(),
output_filename=PIPELINE_DEFINITION_FILE)
_ = runner.run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
query=QUERY,
module_file=os.path.join(MODULE_ROOT, _trainer_module_file),
serving_model_dir=SERVING_MODEL_DIR,
beam_pipeline_args=DIRECT_RUNNER))
beam_pipeline_args=DATAFLOW_RUNNER) )

# docs_infra: no_execute

from google.cloud import aiplatform

from google.cloud.aiplatform import pipeline_jobs
import logging
logging.getLogger().setLevel(logging.INFO)

aiplatform.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_REGION)
job = pipeline_jobs.PipelineJob(template_path=PIPELINE_DEFINITION_FILE,

display_name=PIPELINE_NAME)
job.submit()




More Details about my use-case
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More Details about my use-case

Dataflow < unique-job-name W STOP ~+ IMPORT AS PIPELINE GD SHARE SEND FEEDBACK

o . JOB GRAPH EXECUTION DETAILS JOB METRICS COsT ® RECOMMENDATIONS (1)
verview

Jobs Job steps view
[ Graph view bd CLEAR SELECTION

Pipelines

Workbench

Snapshots SplitData

Succeeded
0 sec
1 of 1 stage succeeded

SQL Workspace

(] WriteSplit[train] (] WriteSplit[eval]
Succeeded Succeeded
2 sec 2 sec
6 of 6 stages succeeded 6 of 6 stages succeeded

Logs =HIDE

JOB LOGS WORKER LOGS DIAGNOSTICS BIGQUERY JOBS

Severity
{Info ﬁ = Filter Search all fields and values C = MAX TIME ~ @

TIMESTAMP SUMMARY

2023-06-04 :39:30. Worker configuration: nl-standard-1 in us-westl-c.

2023-06-04 B0 HD . Executing operation WriteSplit[train]/Write/Write/WriteImpl/DoOnce/Impulse+WriteSplit[train]/Write/Wri..
2023-86-84 :39:32. Executing operation WriteSplit[eval]/Write/Write/WriteImpl/DoOnce/Impulse+WriteSplit[eval]/Write/Write..
2023-06-04 : : . Starting 1 workers in us-westl-c...

2023-06-04 & H o Executing operation InputToRecord/QueryTable/ReadFromBigQuery/FilesToRemoveImpulse/Impulse+InputToReco..

2023-86-04 22:39:32. Executing operation InputToRecord/QueryTable/ReadFromBigQuery/Read/Impulse+InputToRecord/QueryTable/Re..

Dalasca Natac




More Details about my use-case

[50]: import tensorflow_model_analysis as tfma

eval_config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(label_key="'rating')],
slicing_specs=[tfma.SlicingSpec()],
metrics_specs=I[
tfma.MetricsSpec(metrics=[

tfma.MetricConfig(class_name='ExampleCount'),
tfma.MetricConfig(class_name='AUC'),
tfma.MetricConfig(class_name='FalsePositives'),
tfma.MetricConfig(class_name='TruePositives'),
tfma.MetricConfig(class_name='FalseNegatives'),
tfma.MetricConfig(class_name='TrueNegatives'),
tfma.MetricConfig(class_name='BinaryAccuracy’,
threshold=tfma.MetricThreshold(
value_threshold=tfma.GenericValueThreshold(
lower_bound={'value':0.5}),
change_threshold=tfma.GenericChangeThreshold(
direction=tfma.MetricDirection.HIGHER_IS_BETTER,
absolute={'value':0.0001})

)

from tfx.components import Evaluator

evaluator = Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model’'l],
baseline_model= model_resolver.outputs['model'],
eval_config=eval_config)

context.run(evaluator)




More Details about my use-case

# Visualize the evaluation results

eval_result = evaluator.outputs['evaluation’'].get()[@].uri
tfma_result = tfma.load eval result(eval result)
tfma.view.render _slicing metrics(tfma_result)

# Print validation results

eval_result = evaluator.outputs[ 'evaluation’'].get()[©].uri
print(tfma.load_vaiidation_result(eval_result))

validation_ok: true
validation_details {
slicing details {
slicing_ spec {
3

num_matching slices: 1
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Maybe some contact info here?
Twitter

Linkedin

Github

Or whatever you want
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