

NYC 2023

Prathap Reddy
Google

Parallelizing Skewed Hbase
regions using Splittable Dofn

BEAM SUMMIT NYC 2023#

Agenda

● HBase and BigTable Overview

● HBase Snapshot Storage Structure

● Import Snapshots Pipeline

● Challenges & Resolutions

BEAM SUMMIT NYC 2023# 3

● Open Source Distributed Scalable Big
Data Store

● Random read/write access patterns

● Automatic sharding of tables across
regions

● Server side processing using
Coprocessors

 HBase Bigtable

● Fully managed by Google

● High availability and automatic
replication

● Auto Scaling based on application
traffic

● Enterprise grade security and
control

BEAM SUMMIT NYC 2023# 4

● Representation of table at point in time

● Zero Data Copying

● Minimal impact on region servers

● Creating Snapshot

● Export Snapshot to Google Cloud Storage

Hbase Snapshots

hbase> snapshot ‘tableName’, ‘snapshotName’

hbase> hbase \
org.apache.hadoop.hbase.snapshot.ExportSnapshot \
-snapshot $SNAPSHOT_NAME \
-copy-to $BUCKET_NAME$SNAPSHOT_EXPORT_PATH/data \
-mappers $NUM_MAPPERS

BEAM SUMMIT NYC 2023#

Hbase Storage Structure

* Region represents a key range (startKey - endKey) and may live on a different region server

* Store Files are also known as Hfiles

BEAM SUMMIT NYC 2023#

❖ Build Snapshot Config

❖ Read Snapshot (HadoopFormatIO)

❖ Create Mutation

❖ Write to Bigtable

Importing to BigTable (v1)

* Pipeline Source

https://github.com/googleapis/java-bigtable-hbase/blob/main/bigtable-dataflow-parent/bigtable-beam-import/src/main/java/com/google/cloud/bigtable/beam/hbasesnapshots/ImportJobFromHbaseSnapshot.java

BEAM SUMMIT NYC 2023#

Challenges

❖ Skewed regions

❖ Single Table Snapshots

BEAM SUMMIT NYC 2023#

Importing to BigTable (v2)

❖ Read multiple Snapshot Configs

❖ List Regions

❖ Read Region Splits (in parallel)

❖ Create mutation

❖ Write to multiple tables in Bigtable

* Snapshot config provides snapshot name, source path and target table name

BEAM SUMMIT NYC 2023#

Splittable Dofn

❖ Powerful abstraction with support to split each element of work

(element, restriction) -> (element,restriction_1) + (element, restriction_2)

❖ Dynamic rebalancing to avoid stragglers

BEAM SUMMIT NYC 2023#

Splittable Dofn

❖ Restriction represents a portion of work (e.g: OffsetRange, ByteKeyRange)

❖ Similar Syntax as DoFn with an additional RestrictionTracker parameter to
@ProcessElement method

❖ @GetInitialRestriction - Represents the complete work for a given element

❖ @SplitRestriction (Optional) - Supports pre-splitting initial restriction

BEAM SUMMIT NYC 2023#

Execution of Splittable Dofn

BEAM SUMMIT NYC 2023#

Splittable Dofn

BEAM SUMMIT NYC 2023#

Splittable Dofn

BEAM SUMMIT NYC 2023#

Splittable Dofn

BEAM SUMMIT NYC 2023#

Dynamic Splitting

❖ Splits current processing element into primary and residual parts

❖ Runners schedules residual part onto another instance

BEAM SUMMIT NYC 2023#

Dynamic Splitting

BEAM SUMMIT NYC 2023#

Pipeline Graph

BEAM SUMMIT NYC 2023#

Benchmark Tests

❖ Snapshot Datasets

➢ 104 GB with 19 regions (6 regions of 3.5 GB in size and remaining 13 regions are approximately 7 GB)

➢ 875 GB with 14 regions (Mixed region sizes varying from 30GB to 98 GB)

❖ Enabled and Disabled Dynamic Splitting

❖ 10 - 30% improvements in Job Duration with reduced VCPU Consumption

 * Beyond Initial splits enabling further splitting didn’t yield significant differences

NYC 2023

QUESTIONS?
@prathapreddy017

https://github.com/prathapreddy123

https://www.linkedin.com/in/prathapparvathareddy

Prathap Reddy

https://github.com/prathapreddy123
https://www.linkedin.com/in/prathapparvathareddy

