Building Fully Managed Service

for Beam Jobs with Flink on Kubernetes

Rishabh Kedia / Talat Uyarer
Streaming Team
Palo Alto Networks

What is Cortex Data Lake

o Streaming Service Overall Design

Design of Kubernetes Streaming Infrastructure
o How we run Beam Flink Jobs on Kubernetes

What kind of Challenges that we faced
o Checkpoint Challenges

o Scale Challenges
Autoscaling to use resources efficiently

Lake

3=AM

What is Cortex Data Laoke

e PANW provides cloud-based,
centralized log storage and
aggregation for any kind of
firewalls
One of our locations receives
more than 20+ million records
per second and can be scaled to
receive more than 100 million
records per second.

We serve more than 10 different
applications with 20 thousands
streaming jobs in 10+
geographical regions

Streaming Architecture ot PANW

-\

Beam JTob

mm == o|
N —= o
IR —— o

APplico:tion's Endpoin‘t

SelP Healmg

Streaming Architecture ot PANW

“Thanks to Beam, we are
not locked to any vendor,
and we don’t need to
change anything else if we
make the switch.”

- Talat Uyarer
Sr Principal Software Engineer

2272l Scan to View

Bl Today's Agenda

3=AM

NYC 2023

1.

Create a BEAM
pipeline and
compile into a Uber
JAR.

Create a Docker
Image containing
the JAR and Flink
Configuration files
Create a Yaml to
Deploy Kubernetes
make entry point is
flink-run command

Deploying a Beam Job on Kubernetes

Application

Submit app

Dispatcher

Submit app

Deploying a Beam Job on Kubernetes

Job Manager Resource
Manager

Request Slots

Start task

Tacl AMananar

Tacl, Nlananar

Task Manager

Register slots

Instruct slot

Offer Slots

Submit Tgskg in Slots

Exchange

data

Source: https://jbcodeforce.github.io/flink-studies/architecture/

Creating deployments
via a client is not
feasible and makes
integration difficult

Flink introduced a
Kubernetes Operator
to handle all
deployment needs via
extending Kubernetes
Api Server with Custom
Resource Definition.

How About Deploying Thousand Jobs ?

\

o

S
(i
&

:

[IVIRIIE

T

T

U

c N
{ N

\

(¢
[

@
09 09 ;@C¢

T P 2 D SN
A@/) f
X \ \

)

How to integrate in current production?

Complex Kubernetes Interactions
Inconsistent Flink Job
Management

Deployment Errors and
Inefficiencies

Barriers to Innovation

ailability.KubernetesHaServicesFactor

In addition to above items, our
existing production service used
Dataflow API. So how we can integrate

; : loc?L:///opt/ﬂink/examples/streaming/stater-lachineExample.jar O p e rOtO r- W i t h O u t O n A Pl S u p p O rt?
$ kubectl apply -f flink-jobl.yaml

$ kubectl scale flinkdeployment flink-jobl --replicas=16

Solution: FKO Library

.-. --.
- .~ - ~
» .
’
.
~
’
’

-~

\./

- - -
e Nea” ~
R PSR L PGP L T bl UL g

-

Kubernetes API

-~

-
Nemar el

-

oy

. .

B R

g
' 4

FKO Library

-

|

Fetch TemplatI for validation

[|
(=9 |
Cloud
Storage

O

Y LT AL POCLL PO Ll P et PO LL DY
-

o)
S

- v

o~

Flink Kube Operator

- -
Sear N e T e~

-

S

2, .\ \/ ’ . , Al
. " ~ 0 " /
| TR ISTRP S SRS o ST SR, PRS0 NOR MG ot VIRV o IS g YR

Kubernetes Cluster

Benefits
KubernetesOperatorService

getStatusOfJobByName(String, String): F

AuthentiCOtion Ond getStatusOfJobByld(String, String): F
. . deleteJobByName(String, String): F
AUthOFIZOtIOﬂ deleteJobByld(String, String): F
StOndOrdized JOb submitJob(String, String[]): F
getAllJobs(String, String): List<F>
Monogement updateReplica(String, String, int): FlinkJobStatus
Abstracted Kubernetes

Complexity

Easy Upgrades
Effortless Deployment
Empowering Data teams

3=AM

NYC 2023

Checkpointing is important to
have healthy job. Let's calculate
possible cost for our scale

20 K+ jobs
10 Seconds targeted
checkpointing time

Class A Operations

storage.*.insert’

storage.*.patch

storage.*.update
storage.*.setlamPolicy
storage.buckets.list
storage.buckets.lockRetentionPolicy
storage.notifications.delete
storage.objects.compose
storage.objects.copy
storage.objects.list
storage.objects.rewrite
storage.objects.watchAll
storage.projects.hmacKeys.create
storage.projects.hmacKeys.list
storage.*AccessControls.delete

200 write calls (20000 / 10) per "=

Storage Class’

seconds per job
~ 20 Operator per Job
(20 x 200) ~ 4000 write calls per

second ($2 per second)

Standard storage

Checkpointing

Class B Operations Free Operations

storage.*.get storage.channels.stop
storage.*.getlamPolicy storage.buckets.delete
storage.*.testlamPermissions storage.objects.delete
storage.*AccessControls.list storage.projects.hmacKeys.delete
storage.notifications.list

Each object change notification?

Class A operations Class B operations Free operations
(per 1,000 operations) (per 1,000 operations)

$0.005 $0.0004

Source: https://cloud.google.com/storage/pricing

What we did for Checkpointing

Reduce Checkpoint size by
removing PipelineOptions

Beam assign default parallelism for
all independent pipelines without
checking Kafka Partition Count.
Define Memory Threshold to
prevent creating so many small files
(state.storage.fs.memory-threshold)
Enable Unaligned Checkpointing

OL:‘et Storage

Flink Task Assignment Issue

Current Flink Partition Assignments

s e Flink supports evenly

eal-partition-2

opu65% distribution if you have one

source.
traffic-partition-1 traffic-partition-2 thi 1

After Our change

| If you have multiple
cmeon | |eomomn | |coceos independent pipeline like us,
Flink starts scheduling each
When we scale max partitions of source from
e e o o o | zeroth pod/machine
e This makes first couple
machines' load heavier than
tail nodes.

3=AM

NYC 2023

Problem: Scaling

Variable Traffic Pattern
Performance Bottleneck

Resource Underutilization

(HPA is not enough)

Solution; Custom Autoscaler

Consumer 1 ‘
|

Producer Consumer 2 ———-ﬁ

1. Collect Metrics 2. Analyze Metrics . Action / Execute

Get Flink Jobs
v Consumer 3 —> FKO Library

Flink REST Api

FKO Library

1. Get Topological
graph
2. Get Metrics

Flink Kube Cluster

Meter Definition

Throughput How fast we process data on a given pipeline.

Backlog The current lag of the Kafka topic

Backlog Growth Backlog is increasing/decreasing or constant

dBacklog

Backlog Growth =—4

Input Rate Input Rate = BacklogGrowth + Throughput

Backlog Time We should have some backlog for healthy processing. (~10 sec)

Backlog Time = —2kiog
throughput

CPU Utilization What % of CPU is busy

Note: https://www.infoq.com/presentations/google-cloud-dataflow/

Scale Up Scale Down

Pre-condition: cpu > 75% and backlogTime > 10s Pre-condition: cpu < 75% and backlogGrowth < 0 and
backlogTime < 10s

1. Increasing Backlog aka Backlog Growth >0 :
1. So the only driving factor to calculate the required

Input Rate .
e resources after a scale down is CPU.

Worker = Worker
require current Throughput

Consistent Backlog aka Backlog Growth = 0: Weirker

current

Cpu Rate = ————— Cpu Rate

Backlog Time desired Workernew

current Time to Reduce Backlog

current

Worker = Worker
extra

To sum up:

Worker = min(Worker .+ Worker , Worker)
SC requlre extra max,

aleup tr

Note: https://www.infog.com/presentationg/google-cloud-dataflow/

Benefits

Efficient Resource
Utilization

Customizable Scaling
Parameters

Lower Costs (reduced cost
by 50%)

Before

Available Task Slots

42

Total Task Slots 122 Task Managers 122
Running Job List

Job Name

After

Available Task Slots

0

Total Task Slots 122 Task Managers 122

Running Job List

Job Name

Scaling Lessons

Active Resource Manager vs Standalone
- Reducing provisioning time for scale actions

Even though we use Standalone Mode, Internally Flink Submits

jobs when we do scale up and scale down.
- We hit Metascape Out of Memory issue.

- Solution add your jar in Flink lib directory to prevent creating multiple
classloader

Beam did not expose backlog metrics
Flink cache metrics when tasks are rescheduled

Talat Uyarer
Rishabh Kedia

- linkedin.com/in/talatuyarer/
S=AM linkedin.com/in/rishabhkedia/

NYC 2023

