

Shafiqa Igbal and Ikenna Okolo
Google

NYC 2023

Google Cloud Platform

/ Possible stragglers

Google Cloud Platform

WordCount

Pipeline p = Pipeline.create(options);
p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))
.apply(FlatMapElements.via(
word — Arrays.aslList(word.split("["a-zA-Z2"1+"))))
.apply(Filter.byPredicate(word — !word.isEmpty()))
.apply(Count.perElement())
.apply(MapElements.via(
count — count.getKey() + ": " + count.getValue())
.apply(TextIO.Write.to("gs://.../..."));

.run();

Google Cloud Platform

Primitives to keep in mind
A B
e R

GroupByKey L L 1 .

MapReduce = ParDo + GroupByKey + ParDo

shrek is the greatest

How a ParDo would work

(shrek, 1)

s, (movie, 1)

movie ever

- —p (the, 1) (ever, 1)

shard 2 (to, 2)

to be, or not to be

for to be made

(be, 2)
B e

shard 3 |

DO ey

<€

SI9)IOM

Gantt charts

Large WordCount:
Read files, GroupByKey, Write files.

A

%
—
)

X
—
o
=

o

o

Q.

|
20 minutes

Google Cloud Platform

What is a straggler, really?

A

1
-_— Slower than perfectly-parallel:
=

L b sum(t(_,m d) /N

Workers

Amdahl’'s law: it gets worse at scale

#workers

/ serial fraction
N
Speedup = 1+(N_1).S/

Higher scale = More bottlenecked by serial parts.

Uneven partitioning Uneven Complexity Uneven resources Bugs

Process dictionary in e Join keys with some e Bad machines, e Slow RPCs or bugs
parallel by first letter external input values network or resource

-> 6x speedup only contention

by ahmdahl’s law

Uneven partitioning i Uneven resources Bugs

Process dictionary in . Join keys with some . Bad machines, . Slow RPCs or bugs
parallel by first letter external input values network or resource

-> 6x speedup only contention

by ahmdahl's law

A hot key is a key with enough elements to negatively impact pipeline
performance. These keys limit a Pipeline’s ability to process elements
in parallel, which increases execution time.

Think about hotkeys in this way. Let's imagine there's a room filled
with 150 Red, 30 Blue and 20 Green unsorted plates and there are 3
students who are to arrange those plates in sorted orders (as seen
here to the right).

Let's assume that student 1 will sort the Red plates, student 2 will sort
the blue and the last student will sort the green plates.

From the illustration in the previous slide, students 2 and 3 will finish before student 1. Though the second and
third students had already completed sorting their respective colored plates, they have to wait for the first
student to complete theirs before the task can be termed as completed. This delay by student 1is due to the
larger number of plates they need to sort. In parallel processing, this is referred to as hotkeys.

If we replace the students with workers and the unsorted-plates with work-items to be processed, we can apply
the same thinking to Dataflow pipelines. If the work-items are not evenly distributed, then there’s bound to be an
issue of hotkeys which obviously would impact the performance of the Pipeline.

In subsequent slides, we will explain this using a Key Value pair to represent individual work-items.

<K1, V> <K1,(V,\V,V, .., V)> 100% CPU utilization rate.
1,000,000 records

<K1, V>
Idle. D ing data.
<K2, V> <K2, (V, V)> Worker 2 e. Done processing data

<K2, V>
<K3, V>

< Kn, (V, V, V)> Worker n Idle. Done processing data.

o

<Kn, V>
Note that the dataset is heavily imbalanced. K1 has broken the uniformity and thus is
called the "hotkey.”

|

Problem: The next job
will not start until
Worker 1 finishes its
transformations.

Parallelism (Number of active workers)

CPU utilization (All Workers) v @ Create alerting policy

V-

Feb 20, 2020 3:04 PM

/ SELECTED LINES
1PM 4 i ©® packagetransit-793344-022-02201245-
bshe-harness-rbzw
Name Loavs

———— 250,000/
@ Create EDD KV object il
Succeeded 100,000/

@ packagetransit-793344-022-02201245-bshe-harness-0c ~ ® packagetransit-793344-022-02201245- 9 min 16 sec s00005

1PM

bshe-harness-rbzw
@ Package Transit Transform/Package Compositive VO Builder

@ packagetransit-793344-022-02201245-bshe-harness-Oc = ® packagetransit-793344-022-02201245- T 0 e et ERp et o

bshe-ha rness-rgms Siiceaaney @ Package Transit Transform/Package Compositive VO Builder
2 days 4 hr 30 min 35 sec reate_KV._| ivePkgAsKey .0ut0:

0

packagetransit-793344-022-02201245-bshe-harness-0r @ packagetransit-793344-022-02201245-

bshe-harness-dggv A ——— kvl
Join Elements added 85,843,556

Succeeded

® packagetransit-793344-022-02201245-bshe-harness-0x @ packagetransit-793344-022-02201245- e =

bshe-harness-rqgx Package Transit g five VO Buider
object/AddKeys/Map.out0

Elements added 831,220,183

One of the quickest ways to identify a Job that is impacted by hotkeys is by taking a quick © create Prgscancome. Esimated size a0t

Succeeded

5min 29 sec

look at the worker CPU utilisation. While some workers are maxing out at about 90% Output collections
utilisation, some are idle at about <5% utilisation. This truly indicates that there is a reateaering

© ExtractgoodEDD ¥ Extract EDD Throughput (elements/sec) v @

possibility that the Job is stuck due to hotkeys. succesded Succeey boley

4min 59 sec 3min4:

150,000/s

75,0005

-dna-gsi-edd-npe-dev-1, 2020-02-27_04_30_10-5380840952249221324 o ParDo(Buildk

o

Uneven partitioning Uneven complexity Uneven resources

0 lit
ekl Backups

Hand-tune
Restarts

Use data statistics
J

Y Y
Predictive = \ Weak

Using statistical analysis to pre-detect the hot key

Data Monitoring, key partitioning,
iterative optimization

To resolve this issue, you may have to inform the customer to check that their data is evenly distributed. If a key has
disproportionately many values, consider the following courses of action:

Rekey their data. Apply a ParDo transform to output new key-value pairs.
Autosharding
Combine.Globally #withFanout (int fanout)

Java jobs should consider using the Combine.PerKey.withHotKeyFanout transform.
Python jobs should consider using the CombinePerKey.with_hot_key fanout transform.
Finally, consider enabling Dataflow Shuffle (if using dataflow).

2intermediary nodes

https://beam.apache.org/documentation/programming-guide/#pardo
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/transforms/Combine.PerKey.html
https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.core.html#apache_beam.transforms.core.CombinePerKey.with_hot_key_fanout
https://cloud.google.com/dataflow/docs/shuffle-for-batch

CPU utilization (All Workers) v

dna-integration-gsi-edd-p-02270430-b79j-harness-0100

dna-integration-gsi-edd-p-02270430-b79j-harness-05z9

dna-integration-gsi-edd-p-02270430-b79j-harness-0g4x

dna-integration-gsi-edd-p-02270430-b79j-harness-0kjp

A sample beam pipeline that sums total followers of every user
Potential Hot Key for users
with huge following

Extract the person and t
person_followers = (
following_list

| "ExtractPersonAndFollowers" >> beam.ParDo(ExtractPersonAndFollowers())

Group by person and sum t

aggregated_followers

person_followers

| "GroupByPerson" >> beam.GroupByKey()

| "SumFollowers" >> beam.Map(lambda kv: (kv[O], sum(kv[1])))

How to solve it:

person_followers_with_hotkey_fanout =

person_followers
>> beam.transforms.util.WithHotKeyFanout(

ibda person, followers: if followers >=

Use yiner to su
aggregated_followers
person_followers
| “CombineFollowers" >> beam.CombinePerKey(sum)

Form ite the output

formatted_output = (
aggregated_followers
| "FormatOutput" >> beam.Map(lambda kv: f"Person: {kv[@]}, Total Followers: {kv[1]}")
| "WriteOutput" >> beam.io.WriteToText("output.txt")

«~If the hot key is extremely hot,
pre-aggregate data on multi-stage

Use a combiner to sum
followers by person

From this

Iy

- NE&30

Workers

Time

To this

Workers

Time

Hotkeys FAQ

Can we assign a more powerful machine to the worker that is processing the hotkey (i.e.
Worker 1)?

>> Unfortunately, you cannot. Dataflow, by design, assigns the
same machine to all of its workers.

In that case, if all workers run with powerful machines, the pipeline will finish quicker.
+ It will be cheap, since most of them will be idle anyways.

>> This will not speed up the process. A powerful machine will
still use up only one of its cores. Imagine a giant for-loop to
better understand -- cores do not split the work of a for loop.

| enabled autoscale, but my job doesn't finish any faster. Why?

>> You will see in monitoring that the average CPU utilization
rate is far below 20%; therefore, Dataflow will not bring in
more workers. Even if it does, it won't help -- remember that
you already have n-1idle workers. Surely n idle workers won'’t
make a difference.

Root cause: dataset is imbalanced.
Fix the root cause: balance the dataset.

Solution: Classify the
imbalanced key and
break them down into
smaller pieces.

<K1, V>

<K1, V>
<K2, V>
<K2, V>
<K3, V>

<Kn, V>

<K1.1, V>
<K1.1, V>
<K1.2, V>
<K1.2, V>
<K2, V>

<Kn, V>

Hotkeys FAQ

I can’t see the hot key in logging

>> Turn the flag “hotkeyloggingenabled” and make sure the
org hasn’t put restrictions on the amount of logs available

| didn’t define any keys in my pipeline, still facing hot keys

Root cause: dataset is imbalanced.
Fix the root cause: balance the dataset.

Solution: Classify the
imbalanced key and
break them down into
smaller pieces.

<K1, V>

<K1, V>
<K2, V>
<K2, V>
<K3, V>

<Kn, V>

<K1.1, V>
<K1.1, V>
<K1.2, V>
<K1.2, V>
<K2, V>

<Kn, V>

