
NYC 2023

Sho Nakatani
TOYOTA Motor Corporation

@laysakura (GitHub)

Developing
(experimental) Rust SDK and

a Beam engine for IoT devices

https://github.com/laysakura

BEAM SUMMIT NYC 2023

Goal

● About Beam Rust SDK: Make it the 5th Beam SDK
○ Sharing the motivation behind its development
○ Presenting the current status of the project
○ Encouraging collaboration and gathering contributors

● About SpringQL:
○ Providing a brief overview of SpringQL, a stream processor specifically

designed for IoT devices

BEAM SUMMIT NYC 2023

About Me

● Research and Development in stream
processing for cloud and IoT devices

○ Implementing SpringQL in Rust (GitHub repo)
● Recognizing Beam as standard stream

processing model for the next 10 years
○ Desire to support the Beam model for

SpringQL
● Active involvement in the development

of Beam Rust SDK since February 2023

Beam, Rust, and Me

https://github.com/SpringQL/SpringQL

BEAM SUMMIT NYC 2023

Agenda

● Rust SDK Development (17 minutes)
○ Motivation
○ Design
○ Rust-specific challenges
○ History and future prospects

● Introduction to SpringQL & Integration with Beam (3 minutes)

Rust SDK: Motivation

268

BEAM SUMMIT NYC 2023

Motivation for Rust SDK

● For Pipeline Construction (or Programming)
○ Leveraging Rust's statically-typed nature and generics
○ Meeting the demand from Rustaceans for a dedicated Beam Rust SDK

● For Worker
○ Memory safety
○ Performant

■ Comparing to Go: More lightweight runtimes (e.g. no garbage collection)
■ (My interest) High performance single-node SPEs with Beam model?

● Relevant Research: Scabbard, SABER/LightSaber, StreamBox
● “Do We Need Distributed Stream Processing?” (blog post)

○ "a single multicore server can provide better throughput than a
multi-node cluster for many streaming applications"

https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing

Rust SDK: Design

BEAM SUMMIT NYC 2023

Runner

Worker

ClientWhere Rust SDK Works

● Rust SDK works in:
○ Client to construct pipelines
○ Workers to execute

Rust-specific functions
● An application is built as a

binary statically linked with
the Rust SDK

○ Binaries are deployed to both
Client and Workers

○ Different binaries are built
from the same app (source)

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

BEAM SUMMIT NYC 2023

Runner

Worker

ClientWhere Rust SDK Works

● Rust SDK works in:
○ Client to construct pipelines
○ Workers to execute

Rust-specific functions
● An application is built as a

binary statically linked with
the Rust SDK

○ Binaries are deployed to both
Client and Workers

○ Different binaries are built
from the same app (source)

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary

Binary

272

BEAM SUMMIT NYC 2023

Runner

Worker

ClientWhere Rust SDK Works

● Rust SDK works in:
○ Client to construct pipelines
○ Workers to execute

Rust-specific functions
● An application is built into

binary statically linked with
Rust SDK

○ Binaries are deployed to both
Client and Workers

○ Different binaries are built
from the same app (source)

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux
273

BEAM SUMMIT NYC 2023

Design Concepts

● Mainly influenced by TypeScript (features) and Go (compilation &
deployment)

● Statically-typed pipeline construction
● Removal of Pipeline APIs (explained later)
● Asynchronous execution of workers

Note: The design concepts may require further synchronization with other contributors.

BEAM SUMMIT NYC 2023

Design Concepts

● Mainly influenced by TypeScript (features) and Go (compilation &
deployment)

● Statically-typed pipeline construction
● Removal of Pipeline APIs
● Asynchronous execution of workers

Note: The design concepts may require further synchronization with other contributors.

Show the concepts via a word-count pipeline

BEAM SUMMIT NYC 2023#

Word-count pipeline… and its usage from DirectRunner

BEAM SUMMIT NYC 2023#

Word-count pipeline… and its usage from DirectRunner

Statically-typed (w/ automatic type-inference)

line: String

line.split_whitespace(): Vec<String>
→ flat-mapped into String

word: String

(output PCollection): KV<String, i32>

(output PCollection): KV<String, Vec<i32>>

(output PCollection): KV<String, i32>

BEAM SUMMIT NYC 2023#

Word-count pipeline… and its usage from DirectRunner

Statically-typed (w/ generics)

fn from_map<F, In, Out>(func: F) -> ParDo
 where
 F: Fn(&In) -> Out,
 In: ElemType, Out: ElemType

fn from_flat_map<F, In, Out>(func: F) -> ParDo
 where
 F: Fn(&In) -> Vec<Out>,
 In: ElemType, Out: ElemType

fn per_key<F, In, Out>(func: F) -> Combine
 where
 F: Fn(&In) -> Vec<Out>,
 In: ElemType, Out: ElemType

BEAM SUMMIT NYC 2023#

Word-count pipeline… and its usage from DirectRunner

Runner.run() instead of Pipeline.run()

- Same API as TypeScript SDK.

 Runner.run() introduce pipeline root (PValue)

- Proposed in a design doc.

https://s.apache.org/no-beam-pipeline

Rust SDK:
Rust-specific Challenges

BEAM SUMMIT NYC 2023

Runner

Worker

ClientHow to share functions?
(between client and worker)

● Functions (and closures)
○ User-defined ParDo,

CombineFn, Coder, …
● Both binaries contain the

same functions, but how
does a worker determine
which functions to execute?

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux

BEAM SUMMIT NYC 2023

Runner

Worker

ClientHow to share functions?
(between client and worker)

● Functions (and closures)
○ User-defined ParDo,

CombineFn, Coder, …
● Both binaries contain the

same functions, but how
does a worker determine
which functions to execute?

○ From Fn API, worker receives:

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux

BEAM SUMMIT NYC 2023

Runner

Worker

ClientHow to share functions?
(between client and worker)

● How does a worker decide
which function to execute?

● Deserialize function body
from payload?

○ Cannot serialize functions in
Rust (especially for generic
ones).

■ See discussion in a design
doc for detail

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux

https://docs.google.com/document/d/1tUb8EoajRkxLW3mrJZzx6xxGhoiUSRKwVuT2uxjAeIU/edit#heading=h.9zqukrh2c3sk
https://docs.google.com/document/d/1tUb8EoajRkxLW3mrJZzx6xxGhoiUSRKwVuT2uxjAeIU/edit#heading=h.9zqukrh2c3sk

BEAM SUMMIT NYC 2023

Runner

Worker

ClientHow to share functions?
(between client and worker)

● How does a worker decide
which function to execute?

● Function symbols in URN?
○ No reflection in Rust (cannot

call function from its symbol)
○ Closures are unnamed
○ Different from Go SDK

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux

BEAM SUMMIT NYC 2023

Runner

Worker

ClientHow to share functions?
(between client and worker)

● How does a worker decide
which function to execute?

● Registering such map?
“URN → function pointer”

○ Init function might register the
map
■ Note that function

pointers differ in Client
and Worker (different
binary)

○ Requires macro and further
implementation efforts, but
seems not a bad idea

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux

BEAM SUMMIT NYC 2023

Runner

Worker

ClientHow to share functions?
(between client and worker)

● How does a worker decide
which function to execute?

● Registering such map?
“URN → function pointer”

○ Init function might register the
map
■ Note that function

pointers differ in Client
and Worker (different
binary)

○ Requires macro and further
implementation efforts, but
seems not a bad idea

Rust SDK Other SDK

Rust SDK
Harness

Other SDK
Harness

Portable
Runner

Other
Runner

Runner API

Input:
- Pipeline structure

Fn API

Input
- Functions (DoFn,
 CombineFn, Coder, …)
- Input records

Output
- Output records

Binary
aarch64
/ macOS

Binary
x86-64 /

Linux

We are currently working on the development of safe
serialization for functions.

Rust SDK:
Development history and

future

BEAM SUMMIT NYC 2023

Why History?

● While I currently serve as the repository owner of the
experimental Beam Rust SDK, I am not the project's original
contributor.

● It is important for me to acknowledge and honor the
contributions of past and current individuals involved in the
project.

I apologize if I have unintentionally omitted mentioning any specific
contributor names.

BEAM SUMMIT NYC 2023

Started from a JIRA Ticket

● The Rust SDK issue was
created in July 2021 on JIRA

● There was a
recommendation to learn
from the TypeScript SDK

● An initial concept of
pipeline construction was
shared in a Gist

● Contributor
○ jayendra13

● Advisers
○ kennknowles
○ robertwb
○ lostluck

https://issues.apache.org/jira/browse/BEAM-12658
https://gist.github.com/jayendra13/2e12822827a4f758865316d6d42dc9a7
https://gist.github.com/jayendra13
https://github.com/kennknowles
https://github.com/robertwb
https://github.com/lostluck

BEAM SUMMIT NYC 2023

Issue Migrated to GitHub

● The issue on GitHub is still
active to this day

● Experimental
implementation repos:

○ kennknowles/beam [old]
○ ↓ (merged into)
○ nivaldoh/beam [old]
○ ↓ (forked to)
○ laysakura/beam [current]

● Organizer: brucearctor

https://github.com/apache/beam/issues/21089
https://github.com/kennknowles/beam/tree/rust/sdks/rust
https://github.com/nivaldoh/beam/tree/rust_sdk
https://github.com/laysakura/beam/tree/rust_sdk/sdks/rust

BEAM SUMMIT NYC 2023

[Old repo] kennknowles/beam

● Project initiation: January
2023

● The Google Cloud Dataflow
team started a Rust SDK
development

● Later merged into
nivaldoh/beam repository

● Contributors
○ antonbobkov
○ robertwb
○ JayDosunmu
○ y1chi

BEAM SUMMIT NYC 2023

[Old repo] nivaldoh/beam

● Project initiation: November
2022

● Added:
○ Codes for pipeline

construction (partial)
○ Worker codes (partial)

● Development activities
ceased since February 2023

● Contributors
○ nivaldoh
○ sjvanrossum
○ laysakura (me)
○ Miuler

BEAM SUMMIT NYC 2023

[Current repo] laysakura/beam

● Project initiation: February
2023

● Forked from nivaldoh/beam
● Added:

○ Coder serialization (partial)
○ More worker codes (partial)
○ General function serialization

(doing)
○ The Beam Programming Guide

for Rust (doing)
● Contributors

○ dahlbaek
○ sjvanrossum
○ Kelvinyu1117
○ laysakura (me)

BEAM SUMMIT NYC 2023

Future work

● Technically challenging implementations
○ Serialization/deserialization of functions (including closures),

led by sjvanrossum
● Align design considerations for non-trivial features

○ Registration of user-defined objects (possibly through init function w/ macros)
○ Coders (custom coders, row coders, etc.)
○ Artifact staging service

● Completion of the Programming Guide and working examples
● Call for more contributors!

○ Will create good-first issues in laysakura/beam

https://github.com/sjvanrossum
https://github.com/laysakura/beam/issues

SpringQL:
Introduction and

integration with Beam

BEAM SUMMIT NYC 2023

SpringQL’s Target
● Stream Processing Engine

for IoT devices
○ Targeting middle-to-high end

devices
■ Raspberry Pi
■ Connected vehicles

● Support semi-realtime
stream processing

○ Input:
■ Sensor data
■ UI

○ Output:
■ Device actuation
■ Aggregated data (sent to

edge/cloud)
■ UI (display, sound, ...)

Cloud

IoT Edge

IoT Device

IoT Edge

IoT Device IoT Device

https://www.raspberrypi.com/products
/compute-module-4/?variant=raspberr
y-pi-cm4001000

Flink, Spark

StreamBox

SpringQL

https://www.irasutoya.com/2019/10/b
log-post_57.html

BEAM SUMMIT NYC 2023

SpringQL’s Current Status

● Implemented in Rust (repo)
● Distributed as libraries:

○ Rust (static)
○ C (static / dynamic)

● User interface
○ Client: Rust / C
○ Pipeline construction: SQL-like
○ Operation: Streaming SQL

● Problems
○ Difficulty in constructing DAGs

using SQL-like language
○ Limited operations available

through streaming SQL

Desire to utilize Beam for U/I

https://github.com/SpringQL/SpringQL

BEAM SUMMIT NYC 2023

Runner

Worker

Client

● App, Beam SDK, and
SpringQL library are all
within the same process
and binary

● SpringQL library serves as:
○ Client interface
○ Dedicated runner

● SpringQL Runner receives
pipeline graph via Runner
API in protobuf format

● SpringQL runner calls SDK
Harness to execute UDFs

○ May use “LOOPBACK” SDK
Harness (config doc)

Beam Rust
SDK

Beam Rust
SDK Harness

Runner API

Fn API

Initial Idea: Integration with Beam SpringQL rlib
(Client I/F)

1-process
/ 1-binary

SpringQL rlib
(Runner)

Pipeline proto

Fn / bundle proto

https://beam.apache.org/documentation/runtime/sdk-harness-config/

BEAM SUMMIT NYC 2023

Runner

Worker

Client

● App, Beam SDK, and
SpringQL library are all
within the same process
and binary

● SpringQL library serves as:
○ Client interface
○ Dedicated runner

● SpringQL Runner receives
pipeline graph via Runner
API in protobuf format

● SpringQL runner calls SDK
Harness to execute UDFs

○ May use “LOOPBACK” SDK
Harness (config doc)

Beam Rust
SDK

Beam Rust
SDK Harness

Runner API

Fn API

Initial Idea: Integration with Beam SpringQL rlib
(Client I/F)

1-process
/ 1-binary

SpringQL rlib
(Runner)

Pipeline proto

Fn / bundle proto

https://beam.apache.org/documentation/runtime/sdk-harness-config/

BEAM SUMMIT NYC 2023

Runner

Worker

Client

● App, Beam SDK, and
SpringQL library are all
within the same process
and binary

● SpringQL library serves as:
○ Client interface
○ Dedicated runner

● SpringQL Runner receives
pipeline graph via Runner
API in protobuf format

● SpringQL runner calls SDK
Harness to execute UDFs

○ May use “LOOPBACK” SDK
Harness (config doc)

Beam Rust
SDK

Beam Rust
SDK Harness

Runner API

Fn API

Initial Idea: Integration with Beam SpringQL rlib
(Client I/F)

1-process
/ 1-binary

SpringQL rlib
(Runner)

Pipeline proto

Fn / bundle proto

https://beam.apache.org/documentation/runtime/sdk-harness-config/

BEAM SUMMIT NYC 2023

Runner

Worker

Client

● App, Beam SDK, and
SpringQL library are all
within the same process
and binary

● SpringQL library serves as:
○ Client interface
○ Dedicated runner

● SpringQL Runner receives
pipeline graph via Runner
API in protobuf format

● SpringQL runner calls SDK
Harness to execute UDFs

○ May use “LOOPBACK” SDK
Harness (config doc)

Beam Rust
SDK

Beam Rust
SDK Harness

Runner API

Fn API

Initial Idea: Integration with Beam SpringQL rlib
(Client I/F)

1-process
/ 1-binary

SpringQL rlib
(Runner)

Pipeline proto

Fn / bundle proto

https://beam.apache.org/documentation/runtime/sdk-harness-config/

BEAM SUMMIT NYC 2023

Summary

● About Beam Rust SDK
○ Motivation behind its development
○ Current status of the project
○ Call for contributions

● About SpringQL
○ SpringQL’s target systems and architecture
○ Integration idea with Beam

NYC 2023

QUESTIONS?

Twitter: @laysakura
GitHub: laysakura

Sho Nakatani

https://twitter.com/laysakura
https://github.com/laysakura

