Accelerating Machine Learning Predictions with NVIDIA TensorRT and Apache Beam

Shubham Krishna
ML Engineer, ML6
Who is ML6?

Machine Learning services company.

We help our clients build machine learning applications using technologies such as Apache Beam.
Agenda

- Motivation
- Solution
 - **Beam RunInference**: Seamless integration of ML in a Beam pipeline for semantic enrichment
 - **Nvidia TensorRT**: Accelerated + Optimized ML Inference
- Example
Motivation

- Semantic Enrichment: ML models provide semantic information.
- Increasing scale and hardware requirements of ML models.
Semantic Enrichment of Data

- Categorise: Add specific label
- Summarize
- Sentiment Analysis
- Translate
- Extract important keywords
- Image Annotation
- Image Captioning
- Speech Recognition
-
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seamlessly integrate ML models in a Beam pipeline for semantic enrichment of data.</td>
<td>RunInference API = Inference with ML model in batch and streaming pipelines, without needing lots of boilerplate code.</td>
</tr>
<tr>
<td>Increasing scale (longer inference times) and hardware requirements of models.</td>
<td>Nvidia TensorRT = optimized + accelerated ML inference</td>
</tr>
</tbody>
</table>
RunInference >> Custom DoFn

Seamlessly integrate ML model in a Beam pipeline for semantic enrichment of data.
RunInference supports popular ML frameworks
How to use RunInference?

```python
from apache_beam.ml.inference.base import RunInference
with pipeline as p:
    predictions = (p | beam.ReadFromSource('a_source')
                    | RunInference(ModelHandler))
```
from apache_beam.ml.inference.sklearn_inference import SklearnModelHandlerNumpy
from apache_beam.ml.inference.sklearn_inference import SklearnModelHandlerPandas
from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerTensor
from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerKeyedTensor

model_handler = SklearnModelHandlerNumpy(model_uri='model.pkl',
 model_file_type=ModelFileType.JOBLIB)

model_handler = PytorchModelHandlerTensor(state_dict_path='model.pth',
 model_class=PytorchLinearRegression,
 model_params={"input_dim": 1, "output_dim": 1})
from apache_beam.ml.inference.base import KeyedModelHandler
keyed_model_handler = \
KeyedModelHandler(PytorchModelHandlerTensor(...))

with pipeline as p:
 data = p | beam.Create(["img1", np.array([[1, 2, 3],[4, 5, 6],...])],
 "img2", np.array([[1, 2, 3],[4, 5, 6],...]),
 "img3", np.array([[1, 2, 3],[4, 5, 6],...])])

predictions = data | RunInference(keyed_model_handler)
Nvidia TensorRT

Flexible: An SDK designed to work with ONNX, TensorFlow, PyTorch, and others.

Optimizes a neural network for faster inference on NVIDIA GPUs, while preserving model accuracy.
Simplified and Accelerated Inference Pipelines

beam
RunInference API

+ NVIDIA TENSORRT
Example

Using a trained BERT-based (Transformer) text classification model for sentiment analysis in a Beam pipeline.
BERT

- A state-of-the-art (NLP) language model, Google.
- Can be fine-tuned for NLP tasks: text classification, named entity recognition, question answering, etc.
- `textattack/bert-base-uncased-SST-2` finetuned on SST-2 for sentiment analysis.
ML Inference Pipeline in Beam as a DAG

```
with beam.Pipeline(options=pipeline_options) as pipeline:
  _ = (  
    pipeline  
    | "ReadSentences" >> beam.io.ReadFromText(known_args.input)  
    | "Preprocess" >> beam.ParDo(Preprocess(tokenizer=tokenizer))  
    | "RunInference" >> RunInference(model_handler=model_handler)  
    | "PostProcess" >> beam.ParDo(Postprocess(tokenizer=tokenizer))  
  )
```

Tutorial Link: Apache Beam Documentation
1. Blaah. I don't feel good again.

2. The food tastes awesome man.

```python
with beam.Pipeline(options=pipeline_options) as pipeline:
    _ = (pipeline
         | "ReadSentences" >> beam.io.ReadFromText(known_args.input))
```
Preprocess (Tokenization)

The food tastes awesome man.

```python
class Preprocess(beam.DoFn):
    def __init__(self, tokenizer: AutoTokenizer):
        self._tokenizer = tokenizer

    def process(self, element):
        inputs = self._tokenizer(
            element, return_tensors="np",
            padding="max_length",
            max_length=128)
        return inputs.input_ids

model_id = "textattack/bert-base-uncased-SST-2"
tokenizer = AutoTokenizer.from_pretrained(model_id)

"Preprocess" >> beam.ParDo(Preprocess(tokenizer=tokenizer))
```

Hugging Face
TensorRT and RunInference

Input(np.ndarray) -> Preprocess -> RunInference

RunInference (BERT)

(RunInference Output)

Input(np.ndarray) → Prediction(np.ndarray)

```
model_handler = TensorRTEngineHandlerNumPy(
    min_batch_size=1,
    max_batch_size=1,
    engine_path=known_args.trt_model_path,
)

"RunInference" >> RunInference(model_handler=model_handler)
```
A common way to convert PyTorch model to TensorRT
PyTorch to ONNX

```python
from pathlib import Path
import transformers
from transformers.onnx import FeaturesManager
from transformers import AutoConfig
from transformers import AutoTokenizer
from transformers import AutoModelForMaskedLM
from transformers import AutoModelForSequenceClassification

# load model and tokenizer
model_id = "textattack/bert-base-uncased-SST-2"
feature = "sequence-classification"
model = AutoModelForSequenceClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# load config
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model,
 feature=feature)
onnx_config = model_onnx_config(model_config)

# export
onnx_inputs, onnx_outputs = transformers.onnx.export(
    preprocessor=tokenizer,
    model=model,
    config=nnx_config,
    opset=12,
    output=Path("bert-sst2-model.onnx")
)
```
ONNX to TensorRT

```
trtexec --onnx=<path to onnx model> --saveEngine=<path to save TensorRT engine> --useCudaGraph --verbose
```

trtexec - a command-line tool for Onnx to TensorRT Engine conversion
1. Blaaah. I don't feel good again, 😞
2. The food tastes awesome man, 😊
TensorRT is 4.1x faster than PyTorch

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean Inference batch Latency (in microseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorch</td>
<td>15,176</td>
</tr>
<tr>
<td>TensorRT</td>
<td>3,685</td>
</tr>
</tbody>
</table>

Mean Inference batch Latency: Average time to perform the inference on a batch of examples.

GPU: T4, Batch-size = 1 to mimic streaming setup
Takeaways

- RunInference transform eliminates the need for extensive boilerplate code in pipelines with machine learning models.

- Beam and Nvidia TensorRT integration: Enhancing inference pipeline with improved GPU utilization, reduced production cost, and superior latency and throughput.
Code: [GitHub Link](#)

Tutorial: [Apache Beam Documentation Link](#)

Slides: [GitHub Link](#)
QUESTIONS?

Shubham Krishna

shubham-krishna-998922108

shub-kris