Managing dependencies
of Python pipelines

https://s.apache.org/python-dependency-management-beam-summit-2023

Valentyn Tymofieiev
Google

https://s.apache.org/python-dependency-management-beam-summit-2023

Managing dependenciesis ...

..expressing what pipeline needs.

e a Python ML Framework...

e a non-public Python package...
e a third-party Linux software...
o

an existing Docker base image for GPU data processing...
.. controlling what the pipeline actually uses.

e ensuring reproducible, observable, and compatible environments
o dev environment vs launch environment vs runtime environment

Pipeline launch environment

transforms {
key: "ref_AppliedPTransform_PairWithOne_9"
value {
unique_name: "PairWithOne"
spec {
urn: "beam:transform:pardo:v1"
payload: "\n\305\010\n
beam:dofn:pickled_python_info:v1\032\240\010QIpoOTFBWSZT..."
counts = (}
lines inPUtS {
| 'Split' >> (beam.ParDo(WordExtractingDoFn())
| 'PairwWithOne' >> beam.Map(lambda x: (x, 1)) }
| "GroupAndSum' >> beam.CombinePerKey(sum)) Outputs{
value: "ref_PCollection_PCollection_5"

}

environment_id: "ref_Environment_default_environment_1"

.. submit a request
python pipeline.py --runner ... - pipeline.pb - to the runngr

Launch environment Dev environment

Used to launch production Used to iterate on pipeline
pipelines during development
Keep dependencies to a Can have additional

minimum dev-only deps
o can even uninstall some Beam o Jupyter

dependencies not used on job o pylint
submission for your pipeline o

Pipeline runtime environment

Beaom SDK docker container

Worker VM

apache_beam.runnerworker.sdk_worker_main

unique_name: "PairWithOne"
spec { <- [hello, world]

urn: "beam:transform:pardo:v1" .
payload: "\n\305\010\n mmm) beam.Map(lambda x: (x, 1)

beam:dofn:pickled_python_info:v1\032 > [(hel[o 1)
\240\010QIpoOTFBWSZT..." [World’ 1]3

}

documentation/runtime/environments

https://beam.apache.org/documentation/runtime/environments/

Pipeline runtime environment

e Created by the runner

e Configurable by the user via pipeline options
--requirements_file
--extra_package
--setup_file
--sdk_container_image
--sdk_location
--save_main_session

httpos://beam.apache.org/documentation/sdks/python-pipeline-dependencies/

https://beam.apache.org/documentation/sdks/python-pipeline-dependencies/

--requirements_file

Good for:

o Supplying a list of dependencies

Caveats:

o dependencies are first downloaded locally into a folder under /tmp/<..>/
path customizable via --requirements_cache="/path/to/cache’

entire cache dir is staged to the workers during submission.

m reduces dependency on Internet/ PyPl on the workers but incurs network
cost to stage.

m --requirements_cache=skip

No need to stage what's already in the container image

Not recommended for custom containers -- install requirements directly.

https://cloud.google.com/dataflow/docs/concepts/sdk-worker-dependencies

--extra_package

o staging an individual Python package

e Good for:

o non-public packages

o Allows submitting a pipeline workflow spanning multiple files

e Good for:

o Provides a way to install run arbitrary commands on the worker at runtime
m optinstall

o Removes the need to pass --save_main_session where this is otherwise required

e Caveats:

o SDK only stages the pipeline package to the runner, but not its dependencies.

https://beam.apache.org/documentation/sdks/python-pipeline-dependencies/#multiple-file-dependencies

--sdk_container_image

e Good for:

o Complete control over environment customize all the things!
m Preinstall all pip or apt dependencies

o Starting side processes
m See: custom-entrypoint

o Using custom base image.

m NVIDIA NGC, Deep Learning Containers, ...

e Caveats:

o (Dataflow-specific). Large containers:
m --disk_size_gb=XX
m --experiments=disable_worker_container_image_prepull

https://cloud.google.com/dataflow/docs/guides/using-custom-containers#custom-entrypoint
https://cloud.google.com/dataflow/docs/guides/using-custom-containers#use_a_custom_base_image_or_multi-stage_builds
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda
https://cloud.google.com/deep-learning-containers

Using a custom base image

Custom Image + Python + Beam SDK + Beam entrypoint = Custom Beom Container Image.

Caveats (for Ubuntu base images):

e Use matching Python version at submission
e aptinstall python-is-python3
e aptinstall python3-venv

--sdk_location

Supply a custom SDK

o Build your own Python SDK: https://s.apache.org/beam-python-dev-wiki

oit clone https://qithub.com/apache/beam.qit
cd beam/sdks/python

pip install -r build_requirements.txt

python setup.py sdist

python pipeline.py --sdk_location=./dist/apache-beam-2.48.0.dev0.tar.gz

o If using custom SDK builds, you can modify the version.py to 2.48.0+custom

Disable a self-staging behavior
o --sdk_location=container

https://s.apache.org/beam-python-dev-wiki
https://github.com/apache/beam.git
https://github.com/apache/beam/blob/release-2.48.0/sdks/python/apache_beam/version.py

Controlling what pipeline uses

Controlling what pipeline uses

| didnt make any changes but my pipeline now fails on startup.

We've upgraded to a new version of Apbache Beam but the pipeline
started to crash.

| need to recreate a virtual envirionment but when | ‘pip install
apache-beam==<some_old_verison>’, pip takes too long to do
dependency resolution

The pipeline works well on Direct runner but | om getting a
ModuleNotFound / AttributeError on Dataflow.

Change is good, but make it on your terms.

Make sure environments are reproducible.
Have visibility into what has changed.

Make sure environments are compatible.

Reproducible environments

Change is good, but do it on your terms

Reproducible environments

Change is good, but do it on your terms

Tools in Python ecosystems for creating reproducible environments
e Requirements files

e Constraint files

e Lock files (Pipenv Poetry, pip-tools)

e Docker container images

https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://pip.pypa.io/en/stable/user_guide/#constraints-files
https://pipenv.pypa.io/en/latest/
https://python-poetry.org/
https://pypi.org/project/pip-tools/

Pipeline launch environment

transforms {
key: "ref_AppliedPTransform_PairWithOne_9"
value {
unique_name: "PairWithOne"
spec {
urn: "beam:transform:pardo:v1"
payload: "\n\305\010\n
beam:dofn:pickled_python_info:v1\032\240\010QIpoOTFBWSZT..."
counts = (}
lines inPUtS {
| 'Split' >> (beam.ParDo(WordExtractingDoFn())
| 'PairwWithOne' >> beam.Map(lambda x: (x, 1)) }
| "GroupAndSum' >> beam.CombinePerKey(sum)) Outputs{
value: "ref_PCollection_PCollection_5"

}

environment_id: "ref_Environment_default_environment_1"

.. submit a request
python pipeline.py --runner ... - pipeline.pb - to the runngr

Pipeline runtime environment

Beaom SDK docker container

Worker VM

apache_beam.runnerworker.sdk_worker_main

unique_name: "PairWithOne"
spec { <- [hello, world]

urn: "beam:transform:pardo:v1" .
payload: "\n\305\010\n mmm) beam.Map(lambda x: (x, 1)

beam:dofn:pickled_python_info:v1\032 > [(hel[o 1)
\240\010QIpoOTFBWSZT..." [World’ 1]3

}

documentation/runtime/environments

https://beam.apache.org/documentation/runtime/environments/

Example: launch environments

Install Beam with constraints

BEAM VERSION=2.48.0
PYTHON_VERSION="python -c "import sys; print(f'{sys.version_info.major{sys.version_info.minor})"
pip install apache-beam==$BEAM _VERSION --constraint

https://raw.githubusercontent.com/apache/beam/release-${BEAM_VERSION}/sdks/python/container/py${PY_VERSIO
N}/base_image_requirements.txt

Flex templotes

https://github.com/apache/beam/blob/release-2.48.0/sdks/python/container/py39/base_image_requirements.txt
https://cloud.google.com/dataflow/docs/guides/templates/using-flex-templates#python

User I Apache Beam SDK | | DF service |

| Worker VM |

Run the pipeline
python -m pipeline.py ...

Send pipeline graph

"Workers have started successfully!"

Start Worker VM.

"All workers have finished the
startup processes and began to receive work requests!"

Start container pod

Start Harness container

Download SDK cont image

Request work

containers

Start SDK container

Create a virtu

Wait for ALL SDK workers to init

SDK is intializs

Retrieve staged artifacts

| Kubelet | | Harness I SDK boot entrypoint} SDK worker]

| environment

Install Beam SDK
(no-op if already installed)

Install deps ~requirements_file

Install —extra_package(s)
Install workflow package (if any)
Start Python worker process

d, ready to work

All SDKs have registered.

Job finished

Assign work item

Work completed

Assign

ork item

Work completed

=

I
User | Apache Beam SDK | | DF service |

| Worker VM |

| Kubelet |

| Harness | | SDK boot entrypoint | | 'SDK worker |

Runtime environment init

Worker Kubelet Harness

SDK boot entrypoint

SDK worker

Start SDK

containers

Start SDK container

Retrieve staged artifacts

Create a virtual environment

+

(no-op if already installed)

Install Beam SDK

Install deps —requirements_file

Install --extra_package(s)

Install workflow package (if any)

Start Python vyorker process

Reproducible runtime environment

e |sthe environment reproducible?

Can your pipeline run without access to dependency repos?

https://cloud.google.com/dataflow/docs/quides/routes-firewall#turn_off external
io_address

If you recreate the environment, will it have same deps?

If not, will you be able to tell what has changed?

https://cloud.google.com/dataflow/docs/guides/routes-firewall#turn_off_external_ip_address
https://cloud.google.com/dataflow/docs/guides/routes-firewall#turn_off_external_ip_address

Reproducible runtime environment

|s the environment reproducible?
o Can your pipeline run without access to dependency repos?
https://cloud.google.com/dataflow/docs/quides/routes-firewall#turn_off external
io_address
o If you recreate the environment, will it have same deps?
o If not, will you be able to tell what has changed?

Options
o use a preconfigured --sdk_container_image’ pipeline option.
o supply an exhaustive list of pipelines dependencies in the
--requirements_file pipeline option.
m Additionally, can use --prebuild_sdk_container_enqine to perform the
runtime environment initialization sequence ahead of the pipeline execution

+ look up and reuse the prebuilt image via --sdk_container_image option in
the follow up if your dependencies dont change.

https://cloud.google.com/dataflow/docs/guides/routes-firewall#turn_off_external_ip_address
https://cloud.google.com/dataflow/docs/guides/routes-firewall#turn_off_external_ip_address
https://cloud.google.com/dataflow/docs/guides/using-custom-containers#prebuild

Are the environments compatible?

beam.Map(lambda x: (x, 1)) -> payload: "\n\305\010\n
beam:dofn:pickled_python_info:v1\032\240\010QIpoOTFBWSZT..." -> beam.Map(lambda x: (x, 1))

Are the environments compatible?

beam.Map(lambda x: (x, 1)) -> payload: "\n\305\010\n
beam:dofn:pickled_python_info:v1\032\240\010QIpoOTFBWSZT..." -> beam.Map(lambda x: (x, 1))

e pickling library must match: dill (or cloudpickle)

o Compatibility with Beam requirements not as important as matching across envs.
protobuf must be compatible (better: match).
Apache Beam version and Python minor version must match.
Libraries used in the pipeline code may need to match (and be

available).
) from tensorflow.keras import layers

m Needs libraries
m Jop level import in a single pipeline file may need --save_main_session

https://beam.apache.org/documentation/sdks/python-pipeline-dependencies/#pickling-and-managing-the-main-session

So, are my environments compatible?

e Make environments reproducible and observable
o Compare the diff.

e Better: Eliminate the diff!
o Install the same requirements

e Better: Use the same environment for submission and runtime:

Same launch + runtime environment

Base Docker image with Beam,
Python, Pipeline package, its
dependencies

Dataflow Template Launcher

/opt/apache/beam/boot

Templated launch environment Customized runtime environment

See: How to build Flex template from custom custom image

https://cloud.google.com/dataflow/docs/guides/templates/configuring-flex-templates#use_custom_container_images

Valentyn Tymofieiev

Email: valentyn@google.com
Github: tvalentyn
Feel free to reach out to share what works, what doesn’t.

3=AM

NYC 2023

