A Low Code Structured Approach to Deploying Apache Beam ML Workloads on Kubernetes using Beamstack

Charles Adetiloye & Nate Salawe

September 4-5, 2024 Sunnyvale, CA. USA

About the presenters

Charles Adetiloye is a Cofounder and Lead Machine Learning Platforms Engineer at MavenCode. He has well over 16 years of experience building large-scale distributed applications. He has extensive experience working and consulting with several companies implementing production grade ML platforms.

Nate is a Software Developer and Machine Learning Engineer at MavenCode. With a strong background in API development, Machine learning and AI, he specializes in implementing MLOps pipelines and managing model development and deployment. Nate holds a Bachelor's degree in Mathematics and has a keen interest in generative AI and cloud-based LLM solutions.

About Mavencode

MavenCode is an Artificial Intelligence Solutions Company with HQ in Dallas, Texas and a remote delivery workforce across multiple time zones. We do training, product development and consulting services with specializations in:

- Provisioning Scalable AI and ML Infrastructure OnPrem and In the Cloud
- Development & Production Operationalization of ML platforms OnPrem and In the Cloud
- Streaming Data Analytics and Edge IoT Model Deployment for Federated Learning
- Building out Data lake, Feature Store, and ML Model Management platform

twitter.com/mavencode

- Introduction to Beamstack
- Architectural Overview
- Key Features of Beamstack
- Beamstack Use Cases / Demos
- Future Roadmap

4

Introduction to Beamstack

- Beamstack is an open-source framework currently under development, aimed at facilitating the deployment of Machine Learning and GenAl workflow pipelines with Apache Beam on Kubernetes.
- Beamstack provides a robust Command Line Interface (CLI) that can potentially reduce pipeline deployment complexity and timelines drastically. It also possesses great monitoring and visualization features.

Getting Started with Apache Beam ... Could be a lot

- What Runner should I use?
- What SDK should I use?
- Should I be running locally, on kubernetes or on GCP with dataflow?
- Is my code going to be "portable" if I switch runners?
- How do I optimize my code to run efficiently?

What if we could have a packaged tool with everything you need to get started???

Beamstack makes Beam Pipeline Job deployment as simple as

Beamstack makes Pipeline Job deployment as simple as ...

Beamstack Initialization on the Kubernetes Cluster

11

Beamstack will install the components you need ...

... And then you can deploy your Beam YAML jobs

Architectural Overview

Beamstack High Level Architecture

15

How Developers Interact with Beamstack

Infrastructure Agnostic Layer

Key Features of Beamstack

Key Features of Beamstack

Quick Cluster Configuration and Runner Setup

- Kubernetes Cluster Initialization
- Runner Installation and Configuration
- Resource allocation and preparation of the cluster for efficient utilization
- Deployment of additional resources i.e Grafana, Prometheus, ElasticSearch

Pipeline Runner Orchestration

ê

- Runners lifecycle management
- Pipeline Artifacts migration
- Configure monitoring of runner metrics
 and logs
- Runner resource management

Custom Beam Transforms for AI workload

<u>_</u>_

- Collection of PTranforms for AI
- integrates popular ai frameworks like openai and huggingface
- Easily extendable transforms for beam yaml pipelines

Monitoring and Observability

~~~

- Incorporates popular monitoring tools
   like prometheus and grafana
- Real time metrics collection from pipeline runners



# Quick and Easy Cluster and Runner Setup



- Configures kubernetes cluster optimized for ML workflows in less than 60 seconds.
- Automatically installs necessary workload components.
- Consistent and reproducible environment for deploying ML workloads.
- Seamless integration of pipeline components.



## **Runner Orchestration and Management**



- Manages the creation, scaling, and termination of pipeline runners like
   Flink and Spark
- Seamless transfer of necessary data and artifacts to and from pipeline

#### runners

- Configures monitoring of runner performance metrics and logs for tracking
- and diagnostics
- Optimizes resource allocation for pipeline runners



# Custom Beam Transforms for AI and ML workloads



# Monitoring and Observability of Key Metrics





- Integrates with Grafana and Prometheus to capture key cluster metrics
- Collect Real-Time metrics from pipeline Runners
- Provides custom dashboards for supported runners.



# **Beamstack Use Cases**



| Data Preparation                                                                                                     |                                                                                                                                | Data Vectorization                                                                                                                                      |                                                                                                                                                                        | Model Serving / Inferencing                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Data ingestion and cleaning</li> <li>Data ingestion transforms</li> <li>Data cleaning transforms</li> </ul> | <ul> <li>Data Transformation</li> <li>Data transformation pipeline templates</li> <li>Feature engineering workflows</li> </ul> | <ul> <li>Text Embeddings and<br/>Custom Vectorization</li> <li>Text embedding<br/>pipelines</li> <li>Transforms for custom<br/>vectorization</li> </ul> | <ul> <li>Multi-artifact Embedding<br/>and Processing</li> <li>Adaptive media<br/>processing transforms</li> <li>Enables cross-media<br/>embedding pipelines</li> </ul> | Scalable Model<br>Deployment and<br>Real-time Inferencing<br>• Model deployment<br>pipelines<br>• real-time/batch<br>inference transforms |  |



# Example Use Case: Creating Text Embedding + Saving it to Vector Database



# Example Use Case: Creating Text Embedding + Saving it to Vector Database



# Nate's Demo 🙂

# **Future Road Maps**



## Future Roadmap for Beamstack



# Thank you and please connect with us

# **GitHub** https://github.com/beamstackproj



https://bit.ly/beamstack





https://beamstackproj.github.io/

