
September 4-5, 2024

Sunnyvale, CA. USA

Drools ParDo and SCIO Dataflow: A
Goodbye Microservices Tale

Alberto López

Agenda

- Introduction
- The Old Tale: Cloudera and Openshift
- The Modern Tale: Dataflow, GKE, Memorystore/BigTable
- The New Tale: Dataflow, Dataflow, Dataflow
- Implementation: DroolsIO
- Conclusions and Future Work

2Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

About me

- From Madrid, Spain.

- Lived in Ireland and England.

- Working in Deutsche Bank; Technology, Data and Innovation

(TDI) as Technical Leader in Madrid.

- Electronics and Telecommunications Engineer.

- Started coding in C, C++, Java and Android, +14 years ago.

- Ended up doing loads of Scala the last 6 years (Kafka,

Spark) and Beam (last 2 years).

- Music lover!
3

Introduction

4

Introduction

5Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Hello Dataflow! Sayonara microservices. Bye Spring with Drools. Ciao costly
Hazelcast/Memorystore/BigTable…This is a success story about how “low level”
engineering and architecture can beat high level architecture approaches:

- Reducing costs massively.

- Time to market.

- Improving performance, efficiency and scalability.

- Simplifying flows and eliminating technical debt.

The Old Tale: Cloudera and Openshift

6

The Old Tale: Cloudera and Openshift

7

You have some containerised
microservices (e.g: Spring on
Openshift) that are being migrated
into the cloud: “Lift and Shift them
on GKE”.

But, you also have to migrate an In
Memory Data Grid (IMDG) running
on Openshift: “OK, pick
Memorystore/BigTable, adapt your
app and…Lift and Shift the rest on
GKE”.

The Modern Tale: Dataflow, GKE,
Memorystore/BigTable

8

The Modern Tale: Dataflow, GKE,
Memorystore/BigTable

9

1. Can we also say goodbye to the
rest of microservices (alerts,
drools and orchestrator)?

2. Can I run a Drools Knowledge Is
Everything (KIE) Wildfly
Container into Dataflow’s
Windmill?

Check yesterday’s talk on:
https://medium.com/@serna.alb
erto.eng/avoid-http-requests-dupl
icates-in-apache-beam-with-scio-
a-custom-baseasyncdofn-and-sta
te-and-2c7d63059ab3

https://medium.com/@serna.alberto.eng/avoid-http-requests-duplicates-in-apache-beam-with-scio-a-custom-baseasyncdofn-and-state-and-2c7d63059ab3
https://medium.com/@serna.alberto.eng/avoid-http-requests-duplicates-in-apache-beam-with-scio-a-custom-baseasyncdofn-and-state-and-2c7d63059ab3
https://medium.com/@serna.alberto.eng/avoid-http-requests-duplicates-in-apache-beam-with-scio-a-custom-baseasyncdofn-and-state-and-2c7d63059ab3
https://medium.com/@serna.alberto.eng/avoid-http-requests-duplicates-in-apache-beam-with-scio-a-custom-baseasyncdofn-and-state-and-2c7d63059ab3
https://medium.com/@serna.alberto.eng/avoid-http-requests-duplicates-in-apache-beam-with-scio-a-custom-baseasyncdofn-and-state-and-2c7d63059ab3

The New Tale: Dataflow, Dataflow,
Dataflow

10

The New Tale: Dataflow, Dataflow, Dataflow

11

Transaction
Producer: 350-500K,
peaks of
50-100K/min

LATENCIES:

- Cdc to Kafka ~1.5 - 2s

- Dataflow (BTR) to Dataflow

(Orchestrator) to Dataflow

(mediation) ~1s

- Notification HUB ~0.6 - 1 s

Implementation: DroolsIO

12

Implementation: DroolsIO - what’s Drools?

13Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

https://docs.drools.org/7.58.0.Final/drools-docs/html_single/#decision-engine-con_decision-engine

“Drools is a business-rule management
system with a forward-chaining and
backward-chaining inference-based rules
engine, allowing fast and reliable evaluation
of business rules and complex event
processing.

A rules engine is also a fundamental building
block to create an expert system which, in
artificial intelligence, is a computer system
that emulates the decision-making ability of a
human expert.”

https://docs.drools.org/7.58.0.Final/drools-docs/html_single/#decision-engine-con_decision-engine

Implementation: DroolsIO

14Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

https://www.baeldung.com/drools

“Facts – represents data that serves as input for rules

Working Memory – a storage with Facts, where they are used for pattern matching and
can be modified, inserted and removed

Rule – represents a single rule which associates Facts with matching actions. It can be
written in Drools Rule Language in the .drl files or as Decision Table in an excel
spreadsheet

Knowledge Session – it holds all the resources required for firing rules; all Facts are
inserted into session, and then matching rules are fired

Knowledge Base – represents the knowledge in the Drools ecosystem, it has the
information about the resources where Rules are found, and also it creates the
Knowledge Session

Module – A module holds multiple Knowledge Bases which can hold different sessions”

https://www.baeldung.com/drools

Implementation: DroolsIO - KieContainer

15Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

- Singleton instance per Worker.

- New KieContainer per Worker.

- Creation Time ~30s (depending
on downloading .jars for
rules.jar dependencies).

Implementation: DroolsIO

16Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Implementation: DroolsIO - ParDo

17Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Performance Tip, keep your
kieSessions per bundle!

@Setup

@StartBundle

@FinishBundle

Implementation: DroolsIO - ParDo

18Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Implementation: DroolsIO - apply ParDo

19Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Conclusions and Future Work

20

Conclusions

21
Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Latency issues, play around with:
- numberOfWorkerHarnessThreads
- machine types
- profiling

???

Conclusions

22Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

1. Was it the quickest? Yes, time to market was totally won by the Re-engineering approach,
it actually was +75% faster than Lifting and Shifting and adapting the Re-Architecting.

2. Was it the cheapest? Yes, there’s not even a battle here, as we are getting rid off
expensive infra on GCP, such as: GKE and BigTable/Memorystore (saving dozens of K€ /
year).

3. Is it the most maintainable? Yes, operational and development costs ($$) were
dramatically reduced by saying goodbye to: GKE operations, CICD pipelines Releases,
application complexity, (orchestrator, alerts, events, mediation, hazelcast-manager).

4. Was it the most efficient/performant? Yes!
a. lower latencies with the embedded KIEContainer in the Orchestrator and the S & T

pattern in the Mediation with new StateBaseAsyncDoFn).
b. Improved scalability.
c. Goodbye REST API calls and JSON everywhere! Hello AVRO!

5. Was it the best way to expose the notifications to analytics? Yes, easy integration with
Pub/Sub and BQ!

Conclusions

23Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

BTR -> Orchestrator (DroolsIO) -> Mediation (S & T with Async ParDo)

Conclusions - some tips

24Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

Future Work

25Drools ParDo and SCIO Dataflow: A Goodbye Microservices Tale

- Pre load KieContainer ?
- Generic DroolsIO as ruleInput:

RuleInput[T]

26

Thank you!
Questions?

Medium Post:
https://medium.com/@serna.alberto.en
g/drools-pardo-and-scio-dataflow-a-goo
dbye-microservices-tale-cb0946de1bc6

LinkedIn:
https://www.linkedin.com/in/albertolose

https://medium.com/@serna.alberto.eng/drools-pardo-and-scio-dataflow-a-goodbye-microservices-tale-cb0946de1bc6
https://medium.com/@serna.alberto.eng/drools-pardo-and-scio-dataflow-a-goodbye-microservices-tale-cb0946de1bc6
https://medium.com/@serna.alberto.eng/drools-pardo-and-scio-dataflow-a-goodbye-microservices-tale-cb0946de1bc6
https://www.linkedin.com//in/albertolose

