
September 4-5, 2024

Sunnyvale, CA. USA

A new local runner
appears!

A Deep Drive on the Prism runner

Robert Burke
lostluck@apache.org

What is Prism?
A Local Portable Runner

● Apache Beam Runner
○ Portable Only

● Local
○ Data in memory
○ Runs on the same machine
○ Not Distributed

● Built with Go
○ Compact Standalone binaries
○ Powerful Concurrency
○

● Originally for the Go SDK
○ Replaced the Go Direct Runner

Demo

History &
Rationale

Go Direct Runner

● Batch only
● Basic DoFns
● Side Inputs
● Simple GroupByKeys
● Combiners
● Executed SplittableDoFns
● Limited Windowing Support

Observation

If the default runner for an SDK was unable to
support a feature, then users make the mistake
in thinking that the SDK didn’t support the
feature either.

Go Direct Runner

● Missing:
○ State, Timers, Triggers, Windowing Strategies, Cross Language

● Too Permissive
○ Didn’t require DoFn or Type Registrations
○ Didn’t serialize elements
○ Allowed Closure functions

● Made it easy to write code that couldn’t work on other runners

The Timeline

● Started authoring a portable first runner. ~2021
○ First commit in personal repo: ~January 2022
○ Migrated code to Beam repo: February 2023
○ Default for the Go SDK: July 2023 for v2.50.0

● GopherCon Europe 2022 - Stream Processing End to End
○ Revealed the true need

● I gave talks at the last two Beam Summits which outlined some of the
progress. You can find them and their slides
○ Beam Summit 2022
○ Beam Summit 2023

● Beam v2.59.0 - Available to Java & Python SDKs

https://www.youtube.com/watch?v=DMDb7pCGBEg
https://www.youtube.com/watch?v=G4lbkvAG6xk
https://www.youtube.com/watch?v=0iSwoD5nHpE

Structure

Portable Beam
Runners - Generally

● Allow Job Submission via a
JobManagement GRPC
Services

● Runner uses SDK configuration
to manage SDK workers
○ Loopback
○ Docker
○ Process

● Execute jobs.
● SDK side via FnAPI GRPC

services
● Report back results via Job

Management

SDK Runner

Pipeline

Worker

Job Management

Jobs

Submit

FnAPI

Execute

Package Structure

github.com/apache/beam/sdks/go/pkg/beam/runners/prism

prism.go - external entry point

/internal - Job Executor, Stage config, Pipeline Preprocessing

/config - Future fine grain configuration handling infrastructure

/engine - Watermark handling, ElementManager, StageState

/jobservices - Beam JobManagement GRPC services

/urns - Beam Urns

/web - UI

/worker - Beam FnAPI & SDK interactions

Gall’s Law

A simple system may or may not work. A
complex system that works is invariably found
to have evolved from a simple system that
worked. A complex system designed from
scratch never works and cannot be patched up
to make it work. You have to start over with a
working simple system.

~John Gall (1975) Systemantics: How
Systems Really Work and How They Fail

Package Structure

github.com/apache/beam/sdks/go/pkg/beam/runners/prism

prism.go - trunk (internal, jobservices, web)

/internal - trunk (config, engine, urns, worker)

/config - no protos - leaf

/engine - no protos (config)

/jobservices - Protos (config, urns, protos)

/urns - Protos - leaf

/web - trunk, protos, independant

/worker - protos, (engine)

The Loop

After job submission, the pipeline graph is preprocessed

Stages are created to manage runtime metadata

Create stateful handlers - workers for each environment, and configure the Element Manager

Job Executor requests bundles from the Element Manager

Bundles are directed to their matching stage to be executed

SDK worker processes the Bundle

Handle bundle sucess or failure

Handle the

About Time

Updating a
Watermark
Watermark_PCol = Watermark_Out_ProducingPTransform

U = “Union of”

Next_Watermark_In =
 MAX(

Watermark_In,
MIN(

U(TS_Pending),
 U(Watermark_InputPCol)

)
)

Next_Watermark_Out =
 MAX(

Watermark_Out,
MIN(
 Next_Watermark_In || Estimated_Out

U(minWatermarkHold)
)

)

Propagate Output Watermark to Downstream Stages if it has
changed.

See the “updateWatermarks” method for this in code.

Upstream Stages

Downstream Stages

Stage

● Pending Data & Timers
● Timer Holds
● Estimated Output

Output watermark

Input watermark

Future
EventTime

Past
EventTime

● Tracks state for each stage
○ Pending Elements
○ Derives Watermarks

● Evaluates stages for bundle
readiness

● Divides work among bundles

ElementManager
Prism’s Heart

Bundle Generation

● Currently Single threaded
● Determined by a stage’s

watermark
● Stage marked for evaluation

when changed by PersistBundle
○ New pending elements

from upstream
○ Old elements

successfully processed.
○ Timers fired

Deployment

Pre-built Binaries

● Built as part of the Beam
Release
○ Built for Linux, Windows,

and Mac (darwin) for
both ARM64 and AMD64

○ Leveraging Go’s compact
binaries and cross
compilation abilities

● Hosted on Github as Release
Assets

● With v2.59.0 Automatically
downloaded when using
PrismRunner in the Java and
Python SDKs
○ Try with

–runner=PrismRunner

Surprises

Surprises: More Permissive than Expected

● SDKs may
○ “Pre-optimize” pipelines, using typically post Optimized Pipeline constructs on submission.

● Composite transforms may
○ be empty or do non-transform things.
○ May have non-standard unknown URNs.

● Flattens may have
○ no input collections at all.

■ Real usage: “optional” side input data.
○ distinct coders for all involved PCollections

■ The inputs and outputs may not have to match ever.
■ Only truly solvable via removing the flatten via unzipping (currently unimplemented)

Root Cause:

● Java Pipeline Tests use a TestPipeline and just call pipeline.run()
● No blocking means tests spuriously pass, since they don’t wait for pipeline

termination.

Solution:

● Have a TestPrismRunner wrapper to have the blocking behaviour.
○ This is what all the other wrappers do as well.

Problem: Spuriously passing Java Tests

Problem: Missing Java Metrics

Root cause: Java was sending legacy MonitoringInfo metrics

● Prism only understands the modern ShortID format (for compact
representation)

● Java Loopback was never migrated to use the Beam Provisioning APIs
● Runner Capabilities were not being respected.
● The FnHarness kept sending the old format.

Solution: Fix Java Loopback mode (#32198)

https://github.com/apache/beam/pull/32198

The Future

Near Term

● Start to include Prism around the Beam Site
○ Quickstarts, Capability Matrix etc.

● Continue adding new features
○ Bundle Finalization, OnWatermarkExpiry, Triggers

● Improve the Prism documentation
○ https://github.com/apache/beam/pull/32143
○ Contents of this talk, and more.

● Blog Post on Beam site.

https://github.com/apache/beam/pull/32143

One Consistent Onboarding Runner

● Become the Default Runner for all current
and future Beam SDKs

● Consistent experience for all SDKs
● Complete support of the Beam Model

○ Pass all Validates Runner tests in all SDKs
● Address profiling hotspots
● Validate support of further IOs and test

pipelines.

● Possible Goal: Language agnostic SDK
authoring Guide coordinated with Prism
○ Specific Debug logging configurations to

assist in implementing different Portable
SDK features
■ Eg. Verbose logging around metrics,

when working on new Metric
○ Hard disable permissive alternative paths

■ Require that SDK implements a
feature correctly instead of using
fallback implementations.

○ SDK Authoring Guide becomes a “how
does Beam Portability work?” exercise.

Future Work - https://github.com/apache/beam/issues/29650

● Implement non-user visible Beam features
○ Elements on ProcessBundleRequest and

Response
○ Parameterized Window Coders
○ State Cache management
○ And more…

● Improve Configurability
○ Enable/Disable features via Pipeline

Options
○ Configurable Advanced Debug logging

● Improve “Single Box Runner” abilities
○ Improve UI
○ Improve default execution performance

■ Bundle sizing & splitting behaviors
■ Parallelize Bundle generation

○ Reliability
■ Durable Data
■ Pipeline Update & Restarts

● Notebook runner?

https://github.com/apache/beam/issues/29650

Thank You!
● Umbrella Tracking Issue

○ https://github.com/apache/beam/
issues/29650

● Tag @lostluck for prism
interest/questions/comments

● Try Prism in Java and Python
with –runner=PrismRunner

Robert Burke
lostluck@apache.org
@lostluck on Github

https://github.com/apache/beam/issues/29650
https://github.com/apache/beam/issues/29650
mailto:lostluck@apache.org

