
September 4-5, 2024

Sunnyvale, CA. USA

Beam for Large-Scale, Accelerated
ML Inference

Presenter: Uday Kalra
Software Engineer @ Google

Terminology
Words I Will Use and What I Mean

2

Terminology

● Beam → Front-end programming model for batch and streaming data

processing.
○ Specify pipelines typically composed of PTransforms applied to PCollections.

● Engine → Backend Beam Runner (Dataflow, Flink, etc.)

● Accelerator → Referring to Cloud TPUs/GPUs.
○ Typically linked to a serving host machine to execute workloads.

● → Computation library popular for ML engineering/research
 throughout Google.

3

Bulk Inference

● Offline ML Prediction on a known and potentially vast collection of data.
○ Enough to saturate your accelerators for long periods of time (>1 hour).
○ O(1000) slow predictions or O(1M) quick predictions.

● Throughput (Overall Generations/Sec) favored over per-input latency.

● Typical Use Cases:
○ Large-Scale Model Evaluation
○ Dataset Prediction Statistics
○ Teacher Model Distillation

4

The Game Plan
What do Google’s engines prioritize for B.I.?

5

The Goal

● Optimize for Cost and Developer Velocity.
○ Efficiency

■ Accelerators have high power-consumption and cost.
■ Poor utilization/saturation → Expensive and potentially wasteful.

○ Ergonomics
■ Engineers/Researchers in ML like Beam for scaling transformations.
■ Inference → A transformation from input to prediction.

6

The Goal

7

generations = (

 read_remote_dataset('/path/to/data')

 | 'Preprocess' >> beam.ParDo(PreprocessData())

 | 'RunInference' >> PredictionPTransform()

 | 'Postprocess' >> beam.ParDo(PostprocessData())

)

generations | 'WriteResults' >> write_dataset('path/for/outputs')

Model
Inputs

CPU Workers

CPU Workers

CPU Workers

CPU Workers

Engine

Model
OutputsDataset Results

Remote
Storage

Inference Stage Design

8

Remote Server Bulk Inference

9

CPU Workers

CPU Workers

CPU Workers

Engine

CPU Workers

Orchestrator

Scale for
Throughput

Accelerator

Accelerator

Accelerator

Remote Inference Server

Accelerator

Load
Balancer

Remote Storage

Model
Distribute Work

Rate Limit

Beam API

● Model inputs are serialized to
send to the remote server.

● Model server parses request
and runs JAX model inference
function.

● Serialized result is returned to
the DoFn worker.

10

class RemoteInferenceDoFn(beam.DoFn):

 def __init__(self, server_addr):

 self.server_addr = server_addr

 def setup():

 # Occurs once as worker initialization.

 self.model_client = ModelClient(self.server_addr)

 def process(self, element):

 # Occurs for each PCollection element.

 prediction_request = BuildRequest(element)

 prediction_result = self.model_client(prediction_request)

 generation = prediction_result.output()

 Return [generation]

Remote Server Bulk Inference

11

CPU Workers

CPU Workers

CPU Workers

Engine

CPU Workers

Orchestrator

Scale for
Throughput

Accelerator

Accelerator

Accelerator

Remote Inference Server

Accelerator

Load
Balancer

Remote Storage

Model
Distribute Work

Rate Limit

● Load-scaling systems are opponents.
● Number of accelerators can be difficult to determine.
● Server spin-up/down needs to be handled externally.
● Developer has to maintain model server.

Remote Engineer Bulk Inference

12

CPU Workers

CPU Workers

CPU Workers

Engine

CPU Workers

Orchestrator

Scale for
Throughput

Fast-Typing Engineer
w/ Imagination

E-Mail

Local Server(less) Bulk Inference

13

Engine

Orchestrator

Scale for
Throughput

Accelerator Worker

Accelerator Worker

Accelerator Worker

Accelerator Worker

Remote Storage

Model

Beam API

● Beam worker configures JAX
backend to utilize a TPU
accelerator.

● Model is loaded directly on the
Beam Worker.

● Model’s inference function is
executed locally.

14

import jax

from sample_model import MyModel

class LocalInferenceDoFn(beam.DoFn):

 def __init__(self, model_checkpoint):

 self.model_checkpoint = model_checkpoint

 def setup():

 # Occurs once as worker initialization.

 jax.config.update('jax_platforms', 'tpu')

 self.MyModel = MyModel.load(model_checkpoint)

 def process(self, element):

 # Occurs for each PCollection element.

 generation = self.MyModel.inference(element)

 return [generation]

Local Server(less) Bulk Inference

15

Engine

Orchestrator

Scale for
Throughput

Accelerator Worker

Accelerator Worker

Accelerator Worker

Accelerator Worker

Remote Storage

Model

● Accelerator workers are directly
saturated with work.

● Number of accelerators can be scaled
for throughput.

● All in a single pipeline run.
● No more model server.

Beam API

● User can specify accelerator
information to the engine via
resource hint API.

● Pipelines can have several
inference stages all managed
by the engine.

● Accelerator inference stages
and CPU stages can be
intermixed freely.

16

class PredictionPTransform(beam.PTransform):

 def expand(self, pcoll):

 return pcoll | beam.ParDo(

 LocalInferenceDoFn(

 model_checkpoint="/path/to/checkpoint")

).with_resource_hints(

 min_ram="4GB",

 accelerator="type:sample-tpu;count:1"

)

generations = (

 read_remote_dataset('/path/to/data')

 | 'Preprocess' >> beam.ParDo(PreprocessData())

 | 'RunInference' >> PredictionPTransform()

 | 'Postprocess' >> beam.ParDo(PostprocessData())

)

Serverless Challenges

● Potential Debugging Complexity
○ Issues may require joint experience with JAX and Beam

● Accelerator Workers are not CPU workers
○ Engine may require adjustment for novel latency

● Worker scaling can be excessive for predictable workloads
○ Bulk Inference at core is [Data In -> Predictions Out].

17

Takeaways

● Bulk Inference systems are a vast space.
○ Design choices in any dimension will rarely fit all use cases.
○ One can optimize for cost, dev velocity, latency, etc.

● Beam is a powerful, flexible tool for applying operations to data at scale.
○ Inference → One such transformation.
○ With novel engine design, the API naturally extends to GenAI use-cases.

18

19

Thank you!
Questions?

Zhao Fu
Alex Salcianu
Xiaopan Zhang
Anton Bobkov
Tanvir Hassan
Mark Omernick
Hao Zhou

Aleksander Zaks
Zsolt Márton
Josh Newlan
Zachary Westrick
Ruoyu Liu
Evan Rosen
Gene Huang

Uday Kalra
linkedin.com/in/udaykalra

Special Thanks:

