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Terminology
Words I Will Use and What I Mean 

2



Terminology

● Beam → Front-end programming model for batch and streaming data 

processing.
○ Specify pipelines typically composed of PTransforms applied to PCollections.

● Engine → Backend Beam Runner (Dataflow, Flink, etc.)

● Accelerator → Referring to Cloud TPUs/GPUs.
○ Typically linked to a serving host machine to execute workloads.

●                  → Computation library popular for ML engineering/research                                                                                          
              throughout Google.
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Bulk Inference

● Offline ML Prediction on a known and potentially vast collection of data.
○ Enough to saturate your accelerators for long periods of time (>1 hour).
○ O(1000) slow predictions or O(1M) quick predictions.

● Throughput (Overall Generations/Sec) favored over per-input latency.

● Typical Use Cases:
○ Large-Scale Model Evaluation
○ Dataset Prediction Statistics
○ Teacher Model Distillation
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The Game Plan
What do Google’s engines prioritize for B.I.? 
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The Goal

● Optimize for Cost and Developer Velocity.
○ Efficiency

■ Accelerators have high power-consumption and cost.
■ Poor utilization/saturation → Expensive and potentially wasteful.

○ Ergonomics
■ Engineers/Researchers in ML like Beam for scaling transformations.
■ Inference → A transformation from input to prediction.
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The Goal
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generations = (

  read_remote_dataset('/path/to/data')

  | 'Preprocess' >> beam.ParDo(PreprocessData())

  | 'RunInference' >> PredictionPTransform()

  | 'Postprocess' >> beam.ParDo(PostprocessData())

)

generations | 'WriteResults' >>  write_dataset('path/for/outputs')
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Inference Stage Design
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Remote Server Bulk Inference
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Beam API

● Model inputs are serialized to 
send to the remote server.

● Model server parses request 
and runs JAX model inference 
function.

● Serialized result is returned to 
the DoFn worker.
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class RemoteInferenceDoFn(beam.DoFn):

  def __init__(self, server_addr):

    self.server_addr = server_addr

  def setup():

      # Occurs once as worker initialization.

      self.model_client = ModelClient(self.server_addr)

  def process(self, element):

      # Occurs for each PCollection element.

      prediction_request = BuildRequest(element)

      prediction_result = self.model_client(prediction_request)

      generation = prediction_result.output()

      Return [generation]



Remote Server Bulk Inference
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● Load-scaling systems are opponents.
● Number of accelerators can be difficult to determine.
● Server spin-up/down needs to be handled externally.
● Developer has to maintain model server.



Remote Engineer Bulk Inference
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Local Server(less) Bulk Inference
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Beam API

● Beam worker configures JAX 
backend to utilize a TPU 
accelerator.

● Model is loaded directly on the 
Beam Worker.

● Model’s inference function is 
executed locally.
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import jax

from sample_model import MyModel

class LocalInferenceDoFn(beam.DoFn):

  def __init__(self, model_checkpoint):

    self.model_checkpoint = model_checkpoint

  def setup():

      # Occurs once as worker initialization.

      jax.config.update('jax_platforms', 'tpu')

      self.MyModel = MyModel.load(model_checkpoint)

  def process(self, element):

      # Occurs for each PCollection element.

     generation = self.MyModel.inference(element)

     return [generation]



Local Server(less) Bulk Inference

15

Engine

Orchestrator

Scale for 
Throughput

Accelerator Worker

Accelerator Worker

Accelerator Worker

Accelerator Worker

Remote Storage

Model

● Accelerator workers are directly 
saturated with work.

● Number of accelerators can be scaled 
for throughput.

● All in a single pipeline run.
● No more model server.



Beam API

● User can specify accelerator 
information to the engine via 
resource hint API.

● Pipelines can have several 
inference stages all managed 
by the engine.

● Accelerator inference stages 
and CPU stages can be 
intermixed freely.
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class PredictionPTransform(beam.PTransform):

  def expand(self, pcoll):

    return pcoll | beam.ParDo(

      LocalInferenceDoFn(

        model_checkpoint="/path/to/checkpoint")

      ).with_resource_hints(

        min_ram="4GB",

        accelerator="type:sample-tpu;count:1"

    )

generations = (

  read_remote_dataset('/path/to/data')

  | 'Preprocess' >> beam.ParDo(PreprocessData())

  | 'RunInference' >> PredictionPTransform()

  | 'Postprocess' >> beam.ParDo(PostprocessData())

)



Serverless Challenges

● Potential Debugging Complexity
○ Issues may require joint experience with JAX and Beam

● Accelerator Workers are not CPU workers
○ Engine may require adjustment for novel latency

● Worker scaling can be excessive for predictable workloads
○ Bulk Inference at core is [Data In -> Predictions Out]. 
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Takeaways

● Bulk Inference systems are a vast space.
○ Design choices in any dimension will rarely fit all use cases.
○ One can optimize for cost, dev velocity, latency, etc.

● Beam is a powerful, flexible tool for applying operations to data at scale.
○ Inference → One such transformation.
○ With novel engine design, the API naturally extends to GenAI use-cases.
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