
Dataflow Streaming
The Evolution of Real-Time Data Processing

Tom Stepp, Google

Apache Beam Summit
Thursday, 5 Sep 2024 12 PM

Table of Contents

Streaming Modes

Autoscaling Hints

Inflight Updates

Active Load Balancing

01

02

03

04

Streaming Modes01

3

Intro

● Historically, Dataflow Streaming has offered exactly-once processing.

● We provide at-least-once mode as an alternative for lower latency and cost.

● How does each mode work and how do you choose?

4

Exactly Once

● Some applications require exactly once processing.

● Deduplication of events increases overall cost and latency of the system.

● Dataflow ensures that the message will be processed and not lost (at least once).

● State updates and outputs to a subsequent stage, are also reflected at most once.

● This guarantee enables performing exact aggregations, such as exact sums or counts.

5

Exactly Once: Deduplication

6

Streaming Modes

Exactly-once

● Ensures records are not dropped or duplicated as the data moves through the pipeline.

At-least-once

● Guarantees that records are processed at least once, with possible duplicate records.

● Significantly lowers the cost and latency of your job.

7

Which mode?

Exactly once

● Pipelines with aggregations, such as count, sum, or mean.

● Cases that rely on records being processed once and only once.

At-least-once

● Deduplication is performed downstream from Dataflow.

● Map-only without aggregations.

● Output sink can't guarantee exactly-once delivery.

● Input source from Pub/Sub which is significantly optimized when using at-least-once mode.

8

Additional Considerations

● At-least-once mode can significantly reduce the cost and latency of a pipeline.

● When using at-least-once mode the rate of duplicate records depends on the number of retries,

the baseline rate is typically low (<1%).

● Align your I/O semantics with the streaming mode. For example, set BigQuery write mode to

STORAGE_API_AT_LEAST_ONCE.

● Not all transforms are idempotent, such as a transform that appends uses current timestamp. In

that case, a duplicate record can produce several distinct outputs.

9

Performance Comparison

10

Exactly Once At Least Once

Pubsub-to-Pubsub pipeline with stragglers

Cost Comparison

11

Customer Success

12

“By incorporating at-least-once mode in our platform that is
built on Dataflow and Pub/Sub, we have seen a portion of our
Dataflow jobs cut costs by 50%.

Since this is used by several consumers, 7 downstream
systems are now cheaper overall with this simple change.
Because of the way this system works, there has been 0
effects of duplicates!"

Specify Streaming Modes

● Jobs:

○ --dataflowServiceOptions=streaming_mode_at_least_once (Java)

○ --dataflow_service_options=streaming_mode_at_least_once (Python, Go)

● Templates:

○ --additional-experiments=streaming_mode_at_least_once

● Custom Templates metadata file:

○ "streaming": true,
○ "supportsAtLeastOnce": true,
○ "supportsExactlyOnce": true,
○ "defaultStreamingMode": "AT_LEAST_ONCE",

13

Viewing Streaming Mode

14
Dataflow Job Info tab

Autoscaling Hints02

15

Background

● Customers often have different autoscaling preferences for their streaming pipelines.

● Some prefer more aggressive upscaling to achieve lower latency at peak traffic.

● Others may want to provision resources less aggressively to keep costs lower.

● Autoscaling Hint gives users the ability to calibrate the autoscaler behavior accordingly.

16

Trade-offs: Latency vs Cost

17Pub/Sub to BigQuery Job

When to use it?

Consider reducing the autoscaling utilization hint to achieve lower latency when the pipeline:

Scales up too slowly: The autoscale lags behind traffic spikes and backlog seconds start to grow.

Scales down too much: Current worker CPU utilization is low and the backlog grows.

18

Improved Monitoring

19

Autoscaling: shows current and target worker counts as time-series autoscaling data, along with
min / max and target number of workers.

Improved Monitoring

20

Autoscaling rationale: explains the factors driving autoscaling decisions for upscale, downscale,
and no change.

Improved Monitoring

21

Worker CPU utilization: shows current user worker CPU utilization and customer hint value (when
it is actively used in the autoscaling decision). This is an important factor in the autoscaling
decisions.

Improved Monitoring

22

Max backlog: chart gives an indication of pipeline latency. This is another major factor in the
autoscaling decisions.

How to use it?

Example:

● --dataflowServiceOptions=worker_utilization_hint=0.3 (Java)

● --dataflow_service_options=worker_utilization_hint=0.3 (Python, Go)

Note: Use hints in the range [0.1, 0.9] where lower values are more aggressive.

23

03 Inflight Updates

24

Inflight Updates

● Customers often want to update the min/max number of workers for their live streaming jobs, but

can’t afford the downtime.

● This feature allows users to adjust autoscaling at runtime, without pausing the data processing for

long-running streaming jobs.

25

Why Update?

● Save cost when latency spikes: Latency spikes may cause excessive upscaling to handle the

input load. Customers may want to apply a smaller worker limits to reduce the costs.

● Handle expected load spikes: When customers know about an event that may drastically

increase their load, they may want to pre-scale up in advance.

26

Perform Updates

gcloud dataflow jobs update-options \
 --region=us-central1 \
 --min-num-workers=3 \
 --max-num-workers=25 \
 --worker-utilization-hint=0.4 \
 2024-08-09_10_11_12-123456

27

An inflight update may include one or more of: min workers,
max workers, autoscaling worker utilization hint.

04 Active Load
Balancing

28

Why Active Load Balancing?

● Scaling workloads costly, especially in streaming, where latency is heavily scrutinized.

● When there are hot keys, ranges, or workers, they become the bottleneck.

● Autoscaling reacts after there’s a backlog and incurs overhead for adding workers.

● To help, we recently introduced load balancing in Dataflow to help with source reads.

● Better distributed workloads allows processing more data with less resources and lower latencies.

29

Active Load Balancing at Work

● When a pipeline starts up, Dataflow

doesn’t know in advance the amount of

data coming in on any particular data

source.

● Load may change throughout the life of

the pipeline.

30

Active Load Balancing at Work

● Distributes load by moving work across workers to improve utilization and performance.

● Without Load Balancing a single worker could become the bottleneck for the entire pipeline.

31

Without Load Balancing With Load Balancing

Customer Success: Case 1

32

Customer Success: Case 2

33

Note: Each color represents a single worker and its assigned workload, not available externally.

Customer Success: Case 3

34

35

Thank you!

