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Intro

● Historically, Dataflow Streaming has offered exactly-once processing. 

● We provide at-least-once mode as an alternative for lower latency and cost. 

● How does each mode work and how do you choose?
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Exactly Once

● Some applications require exactly once processing.

● Deduplication of events increases overall cost and latency of the system.

● Dataflow ensures that the message will be processed and not lost (at least once). 

● State updates and outputs to a subsequent stage, are also reflected at most once. 

● This guarantee enables performing exact aggregations, such as exact sums or counts.
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Exactly Once: Deduplication
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Streaming Modes

Exactly-once

● Ensures records are not dropped or duplicated as the data moves through the pipeline.

At-least-once

● Guarantees that records are processed at least once, with possible duplicate records. 

● Significantly lowers the cost and latency of your job.
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Which mode?

Exactly once

● Pipelines with aggregations, such as count, sum, or mean.

● Cases that rely on records being processed once and only once.

At-least-once

● Deduplication is performed downstream from Dataflow. 

● Map-only without aggregations. 

● Output sink can't guarantee exactly-once delivery.

● Input source from Pub/Sub which is significantly optimized when using at-least-once mode.
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Additional Considerations

● At-least-once mode can significantly reduce the cost and latency of a pipeline. 

● When using at-least-once mode the rate of duplicate records depends on the number of retries, 

the baseline rate is typically low (<1%).

● Align your I/O semantics with the streaming mode. For example, set BigQuery write mode to 

STORAGE_API_AT_LEAST_ONCE.

● Not all transforms are idempotent, such as a transform that appends uses current timestamp. In 

that case, a duplicate record can produce several distinct outputs.
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Performance Comparison
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Exactly Once At Least Once

Pubsub-to-Pubsub pipeline with stragglers



Cost Comparison
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Customer Success
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“By incorporating at-least-once mode in our platform that is 
built on Dataflow and Pub/Sub, we have seen a portion of our 
Dataflow jobs cut costs by 50%. 

Since this is used by several consumers, 7 downstream 
systems are now cheaper overall with this simple change. 
Because of the way this system works, there has been 0 
effects of duplicates!"



Specify Streaming Modes

● Jobs: 

○ --dataflowServiceOptions=streaming_mode_at_least_once (Java)

○ --dataflow_service_options=streaming_mode_at_least_once (Python, Go)

● Templates: 

○ --additional-experiments=streaming_mode_at_least_once

● Custom Templates metadata file:

○  "streaming": true,
○  "supportsAtLeastOnce": true,
○  "supportsExactlyOnce": true,
○  "defaultStreamingMode": "AT_LEAST_ONCE",
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Viewing Streaming Mode
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Dataflow Job Info tab
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Background

● Customers often have different autoscaling preferences for their streaming pipelines. 

● Some prefer more aggressive upscaling to achieve lower latency at peak traffic. 

● Others may want to provision resources less aggressively to keep costs lower. 

● Autoscaling Hint gives users the ability to calibrate the autoscaler behavior accordingly.
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Trade-offs: Latency vs Cost

17Pub/Sub to BigQuery Job



When to use it?

Consider reducing the autoscaling utilization hint to achieve lower latency when the pipeline:

Scales up too slowly: The autoscale lags behind traffic spikes and backlog seconds start to grow.

Scales down too much: Current worker CPU utilization is low and the backlog grows.
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Improved Monitoring
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Autoscaling: shows current and target worker counts as time-series autoscaling data, along with 
min / max and target number of workers.



Improved Monitoring
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Autoscaling rationale: explains the factors driving autoscaling decisions for upscale, downscale, 
and no change.



Improved Monitoring
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Worker CPU utilization: shows current user worker CPU utilization and customer hint value (when 
it is actively used in the autoscaling decision). This is an important factor in the autoscaling 
decisions.



Improved Monitoring
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Max backlog: chart gives an indication of pipeline latency. This is another major factor in the 
autoscaling decisions.



How to use it?

Example: 

● --dataflowServiceOptions=worker_utilization_hint=0.3 (Java)

● --dataflow_service_options=worker_utilization_hint=0.3 (Python, Go)

Note: Use hints in the range [0.1, 0.9] where lower values are more aggressive.
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03 Inflight Updates
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Inflight Updates

● Customers often want to update the min/max number of workers for their live streaming jobs, but 

can’t afford the downtime.

● This feature allows users to adjust autoscaling at runtime, without pausing the data processing for 

long-running streaming jobs.
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Why Update?

● Save cost when latency spikes: Latency spikes may cause excessive upscaling to handle the 

input load. Customers may want to apply a smaller worker limits to reduce the costs.

● Handle expected load spikes: When customers know about an event that may drastically 

increase their load, they may want to pre-scale up in advance.
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Perform Updates

gcloud dataflow jobs update-options \
  --region=us-central1 \
  --min-num-workers=3 \
  --max-num-workers=25 \
  --worker-utilization-hint=0.4 \
  2024-08-09_10_11_12-123456
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An inflight update may include one or more of: min workers, 
max workers, autoscaling worker utilization hint.



04 Active Load 
Balancing
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Why Active Load Balancing?

● Scaling workloads costly, especially in streaming, where latency is heavily scrutinized. 

● When there are hot keys, ranges, or workers, they become the bottleneck.

● Autoscaling reacts after there’s a backlog and incurs overhead for adding workers.

● To help, we recently introduced load balancing in Dataflow to help with source reads. 

● Better distributed workloads allows processing more data with less resources and lower latencies.
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Active Load Balancing at Work

● When a pipeline starts up, Dataflow 

doesn’t know in advance the amount of 

data coming in on any particular data 

source. 

● Load may change throughout the life of 

the pipeline.
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Active Load Balancing at Work

● Distributes load by moving work across workers to improve utilization and performance. 

● Without Load Balancing a single worker could become the bottleneck for the entire pipeline.
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Without Load Balancing With Load Balancing



Customer Success: Case 1
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Customer Success: Case 2
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Note: Each color represents a single worker and its assigned workload, not available externally.



Customer Success: Case 3
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Thank you!


