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The ML lifecycle



Inference with Beam



Challenges of Distributed Inference

● Efficiently loading models
● Batching
● Model Updates
● Using multiple models



Distributed Inference with Beam

● Beam takes care of all of this with the 
RunInference transform

● Loads model, batches inputs, handles 
updates, and plugs into DAG

RunInference(model_handler=<config>)



RunInference

>>> data = numpy.array([10, 40, 60, 90],
...                           dtype=numpy.float32).reshape(-1, 1)

>>> model_handler = PytorchModelHandlerTensor(
...    model_class=LinearRegression,
...    model_params={'input_dim': 1, 'output_dim': 1},
...    state_dict_path='gs://path/to/model.pt')

>>> with beam.Pipeline() as p:
...   predictions = (
...       p
...       | beam.Create(data)
...       | beam.Map(torch.Tensor) # Map np array to Tensor
...       | RunInference(model_handler=model_handler)
...       | beam.Map(print))



Basic Inference Demo
colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/beam-ml/run_inference_huggingface.ipynb



Large Models



Motivating Use Case

● Text summarization with a 
small-medium sized LLM

● Can fit many copies of model in 
memory

cool-llm-small

I like pizza so 
much, it makes me 
happy. I could eat 

pizza every day for 
the rest of my life.

The writer likes 
pizza.



Distributed Runner Architecture*
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Ideal small model configuration
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Default configuration: share model across threads

● Aka the easy case
● Uses Beam’s shared.py module



Motivating Use Case - revisited

● Text summarization with a 
small-medium sized LLM isn’t good 
enough

cool-llm-small

I like pizza, but I like 
tacos even more. 

Sometimes I order 
pizza with corn on it 
because it reminds 
me of tacos. Yum

The writer likes 
pizza.



Motivating Use Case - revisited

● Many options, one is to switch to a 
larger model

● Can only fit one (or few) copies in 
memory

cool-llm-large

I like pizza, but I like 
tacos even more. 

Sometimes I order 
pizza with corn on it 
because it reminds 
me of tacos. Yum

The writer likes 
pizza, but they like 

tacos more.



Ideal Large Model Configuration
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How do we map ideal model configurations to this?
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Ideal Large Model Configuration
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Optional: serve a single model for all processes

● Reduce memory at cost of 
interprocess communication, 
minimized parallelism 

● Uses beam’s multi_process_shared 
library



Sounds like a lot of work to switch serving configurations, right?

● If you’re spinning this yourself, you 
need to set up a new serving 
topology, but Beam can make it easy



Built in model handler using default configuration

>>> model_handler = PytorchModelHandlerTensor(
...    model_class=LinearRegression,
...    model_params={'input_dim': 1, 'output_dim': 1},
...    state_dict_path='gs://path/to/model.pt')

>>> pcoll | RunInference(model_handler=model_handler)
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Built in model handler using large model configuration

>>> model_handler = PytorchModelHandlerTensor(
...    model_class=LinearRegression,
...    large_model=True,
...    model_params={'input_dim': 1, 'output_dim': 1},
...    state_dict_path='gs://path/to/model.pt')

>>> pcoll | RunInference(model_handler=model_handler)

Model



Custom Model Handler configuration (default, share across threads)

>>> def run_inference(model, batch, …):
...   model.predict(batch)



Custom Model Handler configuration (large model configuration)

>>> def run_inference(model, batch, …):
...   model.predict(batch)

>>> def share_model_across_processes(self) -> bool:
...   return true



Custom Model Handler configuration (medium model configuration)

>>> def run_inference(model, batch, …):
...   model.predict(batch)

>>> def share_model_across_processes(self) -> bool:
...   return true

>>> def model_copies(self) -> int:
...   return 4



Motivating Use Case - revisited

● What if I need a model per customer?

travel-llm-large

I want to visit the Bay Area. I’ve 
always been interested in that 
area of the country because I 
want to see the Golden Gate 
Bridge. I also like nature and 

would like to see Yosemit. Most 
of all, I like technology and want 

to go to the best tech conference, 
Beam Summit.

The writer wants to 
visit the Bay Area so 
that I can see the 
Golden Gate Bridge, 
visit Yosemite, and go 
to Beam Summit

food-llm-large

I like pizza, but I like 
tacos even more. 

Sometimes I order 
pizza with corn on it 
because it reminds 
me of tacos. Yum

The writer likes pizza, 
but they like tacos 

more.



Ideal Multi Large Model Configuration
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Ideal Large Model Configuration
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Optional: serve a single model for all processes

● Model Manager empowered to 
load/unload models in order to make 
optimal use of memory 



Again, this is just configuration

>>> mh1 = PytorchModelHandlerTensor(
...   model_class=LinearRegression,
...   model_params={'input_dim': 1, 'output_dim': 1},
...   state_dict_path='gs://path/to/model.pt')

>>> pcoll | RunInference(mh1)



Again, this is just configuration

>>> mh1 = PytorchModelHandlerTensor(
...   model_class=LinearRegression,
...   model_params={'input_dim': 1, 'output_dim': 1},
...   state_dict_path='gs://path/to/model.pt')
>>> mh2 = <...>

>>> per_key_mhs = [
...   KeyModelMapping(['key1', 'key2', 'key3'], mh1),
...   KeyModelMapping(['foo', 'bar', 'baz'], mh2)]
>>> mh = KeyedModelHandler(per_key_mhs)

>>> pcoll | RunInference(mh)



Per Key Model Demo
colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/beam-ml/per_key_models.ipynb



Specialty Hardware



GPU/TPU Support

● Hardware availability dependent on 
runner

● Beam has some primitives that help



Beam Primitives for GPUs

● Resource hints for heterogeneous 
pools

● Built in detection + framework 
specific responses to GPUs at the 
ModelHandler level

● Large model setting helps



Central Inference Process provides a single point of interaction with GPU
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Try it yourself
https://github.com/apache/beam/tree/master/examples/notebooks/beam-ml



37

Thank you!
Questions?

dannymccormick@google.com

Github - damccorm

https://www.linkedin.com/in/danny
-mccormick-a044b1103/


