
September 4-5, 2024

Sunnyvale, CA. USA

How Beam ML Serves 
Large Models

Danny McCormick



The ML lifecycle



Inference with Beam



Challenges of Distributed Inference

● Efficiently loading models
● Batching
● Model Updates
● Using multiple models



Distributed Inference with Beam

● Beam takes care of all of this with the 
RunInference transform

● Loads model, batches inputs, handles 
updates, and plugs into DAG

RunInference(model_handler=<config>)



RunInference

>>> data = numpy.array([10, 40, 60, 90],
...                           dtype=numpy.float32).reshape(-1, 1)

>>> model_handler = PytorchModelHandlerTensor(
...    model_class=LinearRegression,
...    model_params={'input_dim': 1, 'output_dim': 1},
...    state_dict_path='gs://path/to/model.pt')

>>> with beam.Pipeline() as p:
...   predictions = (
...       p
...       | beam.Create(data)
...       | beam.Map(torch.Tensor) # Map np array to Tensor
...       | RunInference(model_handler=model_handler)
...       | beam.Map(print))



Basic Inference Demo
colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/beam-ml/run_inference_huggingface.ipynb



Large Models



Motivating Use Case

● Text summarization with a 
small-medium sized LLM

● Can fit many copies of model in 
memory

cool-llm-small

I like pizza so 
much, it makes me 
happy. I could eat 

pizza every day for 
the rest of my life.

The writer likes 
pizza.



Distributed Runner Architecture*

VM

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process



Ideal small model configuration

VM

I/O &
Model

I/O &
Model

I/O &
Model

I/O &
Model

I/O &
Model

I/O &
Model

I/O &
Model

I/O &
Model



Default configuration: share model across threads

● Aka the easy case
● Uses Beam’s shared.py module



Motivating Use Case - revisited

● Text summarization with a 
small-medium sized LLM isn’t good 
enough

cool-llm-small

I like pizza, but I like 
tacos even more. 

Sometimes I order 
pizza with corn on it 
because it reminds 
me of tacos. Yum

The writer likes 
pizza.



Motivating Use Case - revisited

● Many options, one is to switch to a 
larger model

● Can only fit one (or few) copies in 
memory

cool-llm-large

I like pizza, but I like 
tacos even more. 

Sometimes I order 
pizza with corn on it 
because it reminds 
me of tacos. Yum

The writer likes 
pizza, but they like 

tacos more.



Ideal Large Model Configuration

VM

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Model



How do we map ideal model configurations to this?

VM

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process



Ideal Large Model Configuration

VM

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Inference 
Process



Optional: serve a single model for all processes

● Reduce memory at cost of 
interprocess communication, 
minimized parallelism 

● Uses beam’s multi_process_shared 
library



Sounds like a lot of work to switch serving configurations, right?

● If you’re spinning this yourself, you 
need to set up a new serving 
topology, but Beam can make it easy



Built in model handler using default configuration

>>> model_handler = PytorchModelHandlerTensor(
...    model_class=LinearRegression,
...    model_params={'input_dim': 1, 'output_dim': 1},
...    state_dict_path='gs://path/to/model.pt')

>>> pcoll | RunInference(model_handler=model_handler)

Model

Model

Model

Model

Model

Model

Model

Model



Built in model handler using large model configuration

>>> model_handler = PytorchModelHandlerTensor(
...    model_class=LinearRegression,
...    large_model=True,
...    model_params={'input_dim': 1, 'output_dim': 1},
...    state_dict_path='gs://path/to/model.pt')

>>> pcoll | RunInference(model_handler=model_handler)

Model



Custom Model Handler configuration (default, share across threads)

>>> def run_inference(model, batch, …):
...   model.predict(batch)



Custom Model Handler configuration (large model configuration)

>>> def run_inference(model, batch, …):
...   model.predict(batch)

>>> def share_model_across_processes(self) -> bool:
...   return true



Custom Model Handler configuration (medium model configuration)

>>> def run_inference(model, batch, …):
...   model.predict(batch)

>>> def share_model_across_processes(self) -> bool:
...   return true

>>> def model_copies(self) -> int:
...   return 4



Motivating Use Case - revisited

● What if I need a model per customer?

travel-llm-large

I want to visit the Bay Area. I’ve 
always been interested in that 
area of the country because I 
want to see the Golden Gate 
Bridge. I also like nature and 

would like to see Yosemit. Most 
of all, I like technology and want 

to go to the best tech conference, 
Beam Summit.

The writer wants to 
visit the Bay Area so 
that I can see the 
Golden Gate Bridge, 
visit Yosemite, and go 
to Beam Summit

food-llm-large

I like pizza, but I like 
tacos even more. 

Sometimes I order 
pizza with corn on it 
because it reminds 
me of tacos. Yum

The writer likes pizza, 
but they like tacos 

more.



Ideal Multi Large Model Configuration

VM

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Model 1

VM

I/O

I/O

I/O

I/O

Model 2

I/O

I/O

I/O

I/O

Model 3



Ideal Large Model Configuration

VM

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Model 
Manager



Optional: serve a single model for all processes

● Model Manager empowered to 
load/unload models in order to make 
optimal use of memory 



Again, this is just configuration

>>> mh1 = PytorchModelHandlerTensor(
...   model_class=LinearRegression,
...   model_params={'input_dim': 1, 'output_dim': 1},
...   state_dict_path='gs://path/to/model.pt')

>>> pcoll | RunInference(mh1)



Again, this is just configuration

>>> mh1 = PytorchModelHandlerTensor(
...   model_class=LinearRegression,
...   model_params={'input_dim': 1, 'output_dim': 1},
...   state_dict_path='gs://path/to/model.pt')
>>> mh2 = <...>

>>> per_key_mhs = [
...   KeyModelMapping(['key1', 'key2', 'key3'], mh1),
...   KeyModelMapping(['foo', 'bar', 'baz'], mh2)]
>>> mh = KeyedModelHandler(per_key_mhs)

>>> pcoll | RunInference(mh)



Per Key Model Demo
colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/beam-ml/per_key_models.ipynb



Specialty Hardware



GPU/TPU Support

● Hardware availability dependent on 
runner

● Beam has some primitives that help



Beam Primitives for GPUs

● Resource hints for heterogeneous 
pools

● Built in detection + framework 
specific responses to GPUs at the 
ModelHandler level

● Large model setting helps



Central Inference Process provides a single point of interaction with GPU

VM

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Worker 
Process

Inference 
Process



Try it yourself
https://github.com/apache/beam/tree/master/examples/notebooks/beam-ml



37

Thank you!
Questions?

dannymccormick@google.com

Github - damccorm

https://www.linkedin.com/in/danny
-mccormick-a044b1103/


