
September 4-5, 2024

Sunnyvale, CA. USA

Improving stability for
running Python SDK with
flink runner

Lydian Lee @ Affirm

Lydian Lee

2

● Staff Engineer @ Affirm Streaming Infra Team
● My Journey

○ ML Engineer
○ ML Ops
○ Data Engineer (focus on streaming)

● Cat Lover

● Contact:
○ LinkedIn: https://www.linkedin.com/in/lydianlee/
○ Github: https://github.com/lydian

https://www.linkedin.com/in/lydianlee/
https://github.com/lydian

A F F I R M | 2 0 2 4

Active Consumers

14% Growth

93% of transactions from repeat users

18.6M

FQ4’24 Transactions

42% Growth

 26% Increased transactions per active
consumer

24.7M

Active Merchants

19% Growth

28% Growth in
Merchants with > $1k TTM GMV

303K

by the numbers
As of FQ4’2024

Agenda

● Original Setup
● Stability Issues we were seeing
● What we discovered
● The Updated Architecture
● Other Improvements
● Summary

4

Affirm Original Beam/Flink Runner Setup

● Lyft Flink K8s Operator
○ Back in 2022, when we started the project, there was no Apache Flink Operator available
○ Lyft Operator is the default choice and was widely adopted in production

● We were running the Beam app with environment as “Process”
○ The Flink task manager & Python Harness runner was under the same container

5

Previous Talk - Beam Summit 2023
Running Beam Multi Language Pipeline on Flink Cluster on Kubernetes
https://youtu.be/XUz90LpGAgc?si=HhScgOJdzskKcae6

https://youtu.be/XUz90LpGAgc?si=HhScgOJdzskKcae6

Affirm’s Original Beam/Flink Runner Setup

6

What are the Status of Affirm’s Beam Usage

● We have total ~1000 Flink app runs in standalone mode
● The Lyft operator has issues and is no longer actively maintained:

○ The operator can only successfully update ~30 app states at a time, which
makes our deployment have to constantly retry on the failed app to get the new
code deployed

○ The operator also doesn’t have good support for High Availability, and leaves
unused configmaps after the deployment

● We decided to switch to Apache Flink Operator

7

The issues

● After migration, we noticed more Out of Memory errors than before

8

Caused by: java.lang.RuntimeException: SDK Harness connection lost.

org.apache.flink.runtime.io.network.netty.exception.RemoteTransportException: Connection
unexpectedly closed by remote task manager '<ip> [<task manager name>] '. This might indicate

that the remote task manager was lost

The Cause

9

● Lyft Flink Operator
○ `systemMemoryFraction`: default 20%, which is reserved for non Java

memory usage

● Apache Flink Operator
○ Almost all scheduled memory is reserved for Java usage
○ Barely any memory left for the python harness job to use

The Solution (Before)

10

The Solution (After)

11

Separate Harness to
a different container

The Solution (Cont.)

● Separate Out the Harness container
○ The Apache Flink Operator allow us to

configure podTemplate and launch sidecar
container

○ Use EXTERNAL instead of PROCESS
● Benefits

○ We can be flexible on the resource usage,
i.e. setting up REQUESTS/LIMITS for the
python container

○ Much easier to monitor for the resource
usage as it is a separate container

12

Beam Args
--runner=portableRunner
--environment_type=EXTERNAL
--environment_config=localhost:50000

Launch Sidecar Container
args:
- /opt/apache/beam/boot
- --worker_pool

Other Improvement We did

● Ensure the checkpoint is using s3p (presto) than s3a (Hadoop)
○ Based on our observation, the checkpointing time for one of the longest job is lower from 5 mins

to 2 mins

● Ensure the Flink Task Manager to run in the same AZ to minimize the network
communication cost

● Have a dedicated node pool in K8s to better control the resource

● Changed the instance type from generic to memory intensive and does save us
some cost as well

13

Summary

● Different from pyspark / pyflink, Beam Python SDK is not a thin wrapper
over the existing library, and thus we should ensure we assigned enough
resource to the SDK harness process

● Using the podTemplate & the Apache Flink Operator to launch a sidecar
container as well as using EXTERNAL environment for portable runner
helps us achieve the goal.

14

Resources

● Demo Repo for the settings:
https://github.com/lydian/beam-python-flink-runner-examples

○ docker-compose
○ k8s

15

https://github.com/lydian/beam-python-flink-runner-examples

16

Thank you!
Questions?

Contact

● LinkedIn: https://www.linkedin.com/in/lydianlee/
● Github: https://github.com/lydian

https://www.linkedin.com/in/lydianlee/
https://github.com/lydian

