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Affirm Original Beam/Flink Runner Setup

e Lyft Flink K8s Operator

o Backin 2022, when we started the project, there was no Apache Flink Operator available
o Lyft Operator is the default choice and was widely adopted in production

e We were running the Beam app with environment as “Process”
o The Flink task manager & Python Harness runner was under the same container
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https://youtu.be/XUz90LpGAgc?si=HhScgOJdzskKcae6

Affirm’s Original Beam/Flink Runner Setup
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What are the Status of Affirm’'s Beam Usage

e We have total ~1000 Flink app runs in standalone mode

e The Lyft operator has issues and is no longer actively maintained:

o The operator can only successfully update ~30 app states at a time, which
makes our deployment have to constantly retry on the failed app to get the new
code deployed

o The operator also doesn’t have good support for High Availability, and leaves
unused configmaps after the deployment

e We decided to switch to Apache Flink Operator



The issues

e After migration, we noticed more Out of Memory errors than before
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The Cause

e Lyft Flink Operator

o systemMemoryFraction': default 20%, which is reserved for non Java
memory usage

e Apache Flink Operator

o Almost all scheduled memory is reserved for Java usage
o Barely any memory left for the python harness job to use
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The Solution (Before

Container
e

1. Launch Job Manager & Task Managers Process
2. Check Flink Cluster Status until its ready to accept Jobs
. Trigger th m_runner jar

5. Start the python process
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The Solution (After

Container

official Flink. operator ‘
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The Solution (Cont.)
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Benefits
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Separate Out the Harness container res: R S R (G
The Apache Flink Operator allow us to - /o;;t/apache/beam/boot
configure podTemplate and launch sidecar - --worker_pool
container
Use EXTERNAL instead of PROCESS
We can be flexible on the resource usage, Beam Args
i.e. setting up REQUESTS/LIMITS for the = -runner:por\tableRunner\

python container --environment_type=EXTERNAL
Much easier to monitor for the resource --environment_config=localhost:50000

usage as it is a separate container
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Other Improvement We did

e Ensure the checkpoint is using s3p (presto) than s3a (Hadoop)
o Based on our observation, the checkpointing time for one of the longest job is lower from 5 mins
to 2 mins

e Ensure the Flink Task Manager to run in the same AZ to minimize the network
communication cost

e Have a dedicated node pool in K8s to better control the resource

e Changed the instance type from generic to memory intensive and does save us
some cost as well
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Summary

Different from pyspark / pyflink, Beam Python SDK is not a thin wrapper
over the existing library, and thus we should ensure we assigned enough
resource to the SDK harness process

Using the podTemplate & the Apache Flink Operator to launch a sidecar

container as well as using EXTERNAL environment for portable runner
helps us achieve the goal.
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Resources

e Demo Repo for the settings:

https://qgithub.com/lydian/beam-python-flink-runner-examples

o docker-compose
o k8s



https://github.com/lydian/beam-python-flink-runner-examples

Thank you!

Questions?

Contact

e LinkedIn:

e Github:
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