Improving stability for
running Python SDK with
flink runner

Lydian Lee @ Affirm

Lydian Lee

Staff Engineer @ Affirm Streaming Infra Team
My Journey

o ML Engineer

o ML Ops

o Data Engineer (focus on streaming)

Cat Lover

Contact:
o LinkedIn: https://www.linkedin.com/in/lydianlee/

o Github: https://qithub.com/lydian

https://www.linkedin.com/in/lydianlee/
https://github.com/lydian

affl rm ' by the numbers

18.6M

Active Consumers

14% Growth

93% of transactions from repeat users

24 /M

FQ4'24 Transactions

42% Growth

(o] i iv
26% Increased transactions per active
consumer

505K

Active Merchants

19% Growth

28% Growth in
Merchants with > $1k TTM GMV

affirm

Original Setup

Stability Issues we were seeing
What we discovered

The Updated Architecture
Other Improvements

Summary

Affirm Original Beam/Flink Runner Setup

e Lyft Flink K8s Operator

o Backin 2022, when we started the project, there was no Apache Flink Operator available
o Lyft Operator is the default choice and was widely adopted in production

e We were running the Beam app with environment as “Process”
o The Flink task manager & Python Harness runner was under the same container

(%)
c
g =
z :
—

(&)

X

https://youtu.be/XUz90LpGAgc?si=HhScgOJdzskKcae6

Affirm’s Original Beam/Flink Runner Setup

Container

Process

5. Start the python process
Beam Runner Jar Python Process —————— Flink Job Manager Flink. Task- Manager

4. Runner starts the Job 8. Send the job to Flink Job Manager | 10- Get Java Artifacts
Service, Artifact Staging 14. Start the harness
Service and Expansion Senvice

9. Distribute Works

17. Send back result
11. Start jJava Worker

[Beam Job Service +—gs bmit Pippline to Job Service B
—

el Beam Expansion Harness
.
Java] 15 Send data to proce
1 \ Worker 16. Send back result
7| Submit Dependencies 13. Get Kafka message
> Beam Artifact Staging service <« ython
Process

£1 12. Read From Kafka

T™ Pod

el (=0 Q%?U:MM 6

What are the Status of Affirm’'s Beam Usage

e We have total ~1000 Flink app runs in standalone mode

e The Lyft operator has issues and is no longer actively maintained:

o The operator can only successfully update ~30 app states at a time, which
makes our deployment have to constantly retry on the failed app to get the new
code deployed

o The operator also doesn’t have good support for High Availability, and leaves
unused configmaps after the deployment

e We decided to switch to Apache Flink Operator

The issues

e After migration, we noticed more Out of Memory errors than before

B 3 = /\
\vry'/“\v — ‘
(D S UMMIT

The Cause

e Lyft Flink Operator

o systemMemoryFraction': default 20%, which is reserved for non Java
memory usage

e Apache Flink Operator

o Almost all scheduled memory is reserved for Java usage
o Barely any memory left for the python harness job to use

X

(72]
c
<
<
-
O

The Solution (Before

Container
e

1. Launch Job Manager & Task Managers Process
2. Check Flink Cluster Status until its ready to accept Jobs
. Trigger th m_runner jar

5. Start the python process

9. Distribute Works
Beam Runner Jar

Flink- Job Manager Flink Task Manager

4. Runner starts the Job 8. Send the job to Flink Job Manager | 10 Get Java Artifacts
Service, Artifact Staging 14. Start the harness
Service and Expansion Senvice 17. Sond back result
Beam Job service

Python Process

11. Start java Worker
6. Submit Pipeline to Job Service

Python Worker,
Beam Expansion Harness
Service
Java
15. Send data to process
1 \ Worker = 16. Send back result
7| Submit Dependencies 13. Get Kafka message
Beam Artifact Staging Service « Python
Process
| IM-Pod 12. Read From Kafka
TM Pod
Kafka
ac Input
Volume

10

(%)
c
<
<
—

The Solution (After

Container

official Flink. operator ‘
1. Launch Job Manager Process
2. Check Flink Cluster Status until its ready to accept Jobs
3. Trigger the beam runner jar
Peciai il R R R R S S N Y i e ~ing
’ A Y
’ \
1 5. Start the python process \ 1 9. Create Task Manager Pod
i
1 Beam Runner Jor Python Process —-{ Flink. Job Manager : Separate Harness to
10. Distribute Works H H
4. Runner starts the Job 8. Send the job to 1
Service, Attitact h in J Flink Job Manager 1 a different container
Service and Expansion Service : P e
1 1 i°
1 ; 1 y
. Beam Job Seryice e A Y el e e . 1 ‘ ;
! e ! 11. GetJava Atfacts_, Firk. Tosk. Monager [15.Sendthe taskto Hamess :
' Service i 1 1
' J \ ' ! 1. 17. Send back resull
' | 7| Submit Dependencies i ! Send Python Worker 1
I Beam Artifact Staging Service < f : 12. Start java Worker back! | Harness !
[1 ' result 16. Spin a :
! " ’ 1 14. Get Kafka message process to
\ Fink-main-conttainer : = work on the :
A task
S o Job manager, # ! Java Process 1
! Worker 1
[1
: Flink-Main-Container Python-Worker-Harness-Container :
1 1
1 13. Read From Kafka 1
\ l
.
Vil e e e e e e e Task manager, c—
E j % 3
Volume PR I I

The Solution (Cont.)

(@)

(@)

Benefits

(@)

Separate Out the Harness container res: R S R (G
The Apache Flink Operator allow us to - /o;;t/apache/beam/boot
configure podTemplate and launch sidecar - --worker_pool
container
Use EXTERNAL instead of PROCESS
We can be flexible on the resource usage, Beam Args
i.e. setting up REQUESTS/LIMITS for the = -runner:por\tableRunner\

python container --environment_type=EXTERNAL
Much easier to monitor for the resource --environment_config=localhost:50000

usage as it is a separate container
% SUMM | T 12

Other Improvement We did

e Ensure the checkpoint is using s3p (presto) than s3a (Hadoop)
o Based on our observation, the checkpointing time for one of the longest job is lower from 5 mins
to 2 mins

e Ensure the Flink Task Manager to run in the same AZ to minimize the network
communication cost

e Have a dedicated node pool in K8s to better control the resource

e Changed the instance type from generic to memory intensive and does save us
some cost as well

%SUMMIT 13

Summary

Different from pyspark / pyflink, Beam Python SDK is not a thin wrapper
over the existing library, and thus we should ensure we assigned enough
resource to the SDK harness process

Using the podTemplate & the Apache Flink Operator to launch a sidecar

container as well as using EXTERNAL environment for portable runner
helps us achieve the goal.

% SBUEMMM %

Resources

e Demo Repo for the settings:

https://qgithub.com/lydian/beam-python-flink-runner-examples

o docker-compose
o k8s

https://github.com/lydian/beam-python-flink-runner-examples

Thank you!

Questions?

Contact

e LinkedIn:

e Github:

16

https://www.linkedin.com/in/lydianlee/
https://github.com/lydian

