
September 4-5, 2024

Sunnyvale, CA. USA

Introduction to Beam YAML

Presented by:
Jeff Kinard

Software Engineer at Google
Working on Apache Beam and Dataflow

Introduction

Basic Syntax

Current Turnkey Transforms

Use-case

Running a Pipeline

01

02

03

04

05

Agenda

3

Introduction
01

How do we make Beam easier?

● Python, Golang, typescript, etc. SDK’s to give users a choice of language
○ Still requires programming language knowledge and Beam model experience

● Beam SQL to convert data engineers familiar with SQL
○ Performance limitations (hotkeys, etc.)
○ Syntax limitations
○ Deprecated

● Dataflow Templates (Dataflow runner only)
○ Only works if someone has written a pipeline that exactly matches your use case
○ Even the smallest tweaks typically require as much knowledge as writing a pipeline

from scratch.

YAML - An easier way to express pipelines

● A format many more users are familiar with
● Easier to author and deploy intermediate pipelines without the complexity

of Beam (e.g. SDK/dependency install, set up dev environment, grok Beam
programming model)

● Easily copy, modify, share existing YAML pipelines

Core goals of Beam YAML Design

● Schema-first design (i.e. structured data via Beam Row)
○ But allow for schemaless

● Deliver main Beam functionality
○ IO’s, Windowing, Turnkey transforms, etc.

● Robust error handling on a per-transform basis
● Easy syntax with syntactic sugar where possible
● Built-in transforms and IO’s can be executed using Java or Python

interchangeably
○ Affinity heuristic will optimize pipeline for specific SDK

● Allow for code translation for getting started with Beam

7

Basic Syntax
02

Basic Read-Write YAML Pipeline

pipeline:
 type: chain

 source:
 type: ReadFromPubSub
 config:
 subscription: ...
 format: ...
 schema: ...

 sink:
 type: WriteToBigQuery
 config:
 table: ...

ReadFromPubSub

WriteToBigQuery

Add a Transformation

pipeline:
 type: chain

 source:
 type: ReadFromPubSub
 config:
 subscription: ...
 format: ...
 schema: ...

 transforms:
 - type: MapToFields
 config:
 language: python
 fields:
 name: "name.upper()"
 age: "age + 20"

 sink:
 type: WriteToBigQuery
 config:
 table: ...

ReadFromPubSub

MapToFields

WriteToBigQuery

Many transforms can be chained

pipeline:
 type: chain

 transforms:
 - type: ReadFromPubSub
 config:
 subscription: ...
 format: ...
 schema: ...

 - type: MapToFields
 config:
 language: python
 fields:
 name: "name.upper()"
 age: "age + 20"

 - type: Explode
 config:
 fields: [pets]

 ...

ReadFromPubSub

MapToFields

Explode

Pipelines need not be linear

pipeline:
 transforms:
 - type: ReadFromPubSub
 config: ...

 - type: MapToFields
 name: Map1
 input: ReadFromPubSub
 config: ...

 - type: ReadFromAvro
 config:
 path: "gs://..."

 - type: Join
 input:
 left: Map1
 right: ReadFromAvro
 config:
 ...

 ...

ReadFromAvro

Map1

ReadFromPubSub

Join

Sophisticated error handling

pipeline:
 transforms:
 - type: ReadFromPubSub
 config: ...

 - type: MapToFields
 name: Map1
 input: ReadFromPubSub
 config:
 ...
 error_handling:
 output: errors

 - type: WriteToBigQuery
 input: Map1
 config: ...

 - type: WriteToJson
 name: WriteMappingErrors
 input: Map1.errors
 config:
 path: "/path/to/errors.json"

ReadFromPubSub

Map1

WriteToBigQuery WriteMappingErrors

13

Current Turnkey Transforms
03

Beam YAML supports a large number of IOs…

● ReadFrom/WriteToAvro
● ReadFrom/WriteToCsv
● ReadFrom/WriteToJson
● ReadFrom/WriteToParquet
● ReadFrom/WriteToMySql
● ReadFrom/WriteToBigQuery
● ReadFrom/WriteToPubSub
● ReadFrom/WriteToKafka
● . . .

Full list at https://beam.apache.org/releases/yamldoc/current/

https://beam.apache.org/releases/yamldoc/current/

…and other turn-key transforms

● Utility
○ Create
○ Flatten
○ WindowInto
○ LogForTesting
○ AssertEqual

● Mapping
○ MapToFields
○ Explode
○ Filter
○ Partition

● Aggregation
○ Combine

Full list at https://beam.apache.org/releases/yamldoc/current/

● ML
○ MLTransform (experimental)

■ Coming to
template/gcloud in Beam
2.59

○ Enrichment (coming soon)
○ RunInference (coming soon)

● Other
○ Sql
○ Join

● . . .

https://beam.apache.org/releases/yamldoc/current/

Example: MapToFields

 - type: MapToFields
 name: RenameAndMapCustomFields
 input: ReadFromCsv
 config:
 language: python
 fields:
 myNewStr: "myOldStr"
 myNewNum:
 callable: "lambda row: row.myOldNum * 2"
 myNewName:
 path: "udf.py"
 name: "to_uppercase"

myOldNum myOldStr myOldName

1 “a” “John”

2 “b” “Jane”

3 “c” “Apache Beam”

myNewNum myNewStr myNewName

2 “a” “JOHN”

4 “b” “JANE”

6 “c” “APACHE BEAM”

Full docs at https://beam.apache.org/documentation/sdks/yaml-udf/ /

https://beam.apache.org/documentation/sdks/yaml-udf/
https://beam.apache.org/releases/yamldoc/current/

17

Use-case
04

Use case: Department Store

transaction_id product_name category price

T0012 Headphones Electronics 59.99

T5034 Leather Jacket Apparel 109.99

T0024 Aluminum Mug Kitchen 29.99

T0104 Headphones Electronics 59.99

… … … …

T0302 Monitor Electronics 249.99

● Department store records every transaction and stores in a MySQL database

Use case: Department Store
● It is the end of the fiscal year, and the Electronics department needs

to gather a report of transactions for auditing purposes

CSV

Use case: Department Store
● How would this look in Beam YAML?

CSV

ReadFromMySql Filter WriteToCsv

Simple filter pipeline

pipeline:
 type: chain

 source:
 type: ReadFromMySql
 config:
 url: jdbc:mysql://host:port/database
 table: transactions
 username: 'username'
 password: 'password'

 transforms:
 - type: Filter
 config:
 language: python
 keep: category == "Electronics"

 sink:
 type: WriteToCsv
 config:
 path: electronics.csv

ReadFromMySql

Filter

WriteToCsv

Use case: Department Store

transaction_id product_name category price

T0012 Headphones Electronics 59.99

T5034 Leather Jacket Apparel 109.99

T0024 Aluminum Mug Kitchen 29.99

T0104 Headphones Electronics 59.99

… … … …

T0302 Monitor Electronics 249.99

● Results of the pipeline…

transaction_id product_name category price

T0012 Headphones Electronics 59.99

T0104 Headphones Electronics 59.99

… … … …

T0302 Monitor Electronics 249.99

Use case: Department Store
● Fast forward... It is now the beginning of the next fiscal year, and the Electronics

department needs to order more inventory to meet expected demand

CSVCount

ReadFromMySql Filter WriteToCsvCombine

Simple aggregation pipeline

pipeline:
 type: chain
 transforms:
 - type: ReadFromMySql
 config:
 url: jdbc:mysql://host:port/database
 table: transactions
 username: 'username'
 password: 'password'
 - type: Filter
 config:
 language: python
 keep: category == "Electronics"
 - type: Combine
 name: CountNumberSold
 input: FilterWithCategory
 config:
 group_by: product_name
 combine:
 num_sold:
 value: product_name
 fn: count
 - type: WriteToCsv
 config:
 path: electronics.csv

ReadFromMySql

Filter

Combine

WriteToCsv

Use case: Department Store
● Results of the pipeline…

transaction_id product_name category price num_sold

T0012 Headphones Electronics 59.99 2

… … … …

T0302 Monitor Electronics 249.99 1

transaction_id product_name category price

T0012 Headphones Electronics 59.99

T0104 Headphones Electronics 59.99

… … … …

T0302 Monitor Electronics 249.99

ReadFromMySql

Filter

Join

Combine

ReadFromPostgres

Use case: Department Store

27

Running a Pipeline
05

Running Beam YAML

● On Dataflow

● Locally

Can set runner using --runner or in YAML options block

$ gcloud dataflow yaml run /path/to/my.yaml

$ python -m apache_beam.yaml.main --yaml_pipeline_file=/path/to/my.yaml

Dataflow Job Builder

More Information
● Beam YAML docs:

○ https://beam.apache.org/documentation/sdks/yaml/
● Beam YAML Getting Started Notebook:

○ https://colab.sandbox.google.com/github/apache/beam/blob/master/exam
ples/notebooks/get-started/try-apache-beam-yaml.ipynb

● Beam YAML blog:
○ https://beam.apache.org/blog/beam-yaml-release/

● Beam YAML examples catalog (including use-case from slides)
○ https://github.com/apache/beam/tree/master/sdks/python/apache_beam/y

aml/examples

https://beam.apache.org/documentation/sdks/yaml/
https://colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/get-started/try-apache-beam-yaml.ipynb
https://colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/get-started/try-apache-beam-yaml.ipynb
https://beam.apache.org/blog/beam-yaml-release/
https://github.com/apache/beam/tree/master/sdks/python/apache_beam/yaml/examples
https://github.com/apache/beam/tree/master/sdks/python/apache_beam/yaml/examples

Thank you!
Questions?

Please reach out with any questions!

Email:
jkinard@google.com

LinkedIn:
https://www.linkedin.com/in/jeffrey-kinard-9
2637214a/

