Lessons learnt from MLOps
for GenAl at Google Scale
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About me

e Currently Product Lead @ Google
e Building ML Platforms and tools for Googlers to build and deploy
models in production.
e Prior to Google:
o Worked at Meta, Databricks, Nefflix, ...

o Building big data and Al platforms is my area of expertise.
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Gemini & Gemma Models

Al @ Google
Gemini adaptation workflows

Gemini adaptation characteristics & challenges

Q&A
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Gemini 1.0

Family released end 2023,
Natively multi-modal

Came in 3 flavors:

@ Ultra - best in class across modalities
@ Pro - more broadly deployable

@ Nano - for on device

Sequence
5
Aa
( J
Al Image -
Decoder as
Transformer
- ~
= Text
Decoder
N J

(ot )

4
Prompt

Here's a solution to a Physics problem by a student.

23. A skier slides down the frictionless slope as shown. What is the skier's speed at the bottom?
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Try to reason about the question step by step.

Did the student get the correct answer? If the solution is wrong, please
explain what is wrong and solve the problem.

Make sure to use LaTeX for math and round off the final answer to two
decimal places.

’
Response

The student did not get the correct answer. The student made a mistake
in the calculation of the potential energy at the start of the slope. The
potential energy at the start of the slope is given by mgh, where m is the
mass of the skier, g is the acceleration due to gravity, and h is the height
of the slope. The student used the length of the slope, L, instead of the
height, H, in the calculation of the potential energy.

The correct solution is:

The conservation of energy means that the total energy of the skier is
the same at the beginning and at the end of the slope.

At the start of the slope, the skier has only potential energy, which is
given by mgh.

At the end of the slope, the skier has only kinetic energy, which is given
by > mv*

Therefore, we can write:
mgh = %mv’

Canceling out the mass m on both sides, we get:

1
gh= 3 v
Solving for v, we get:
v=V2gh

Substituting the given values, we get:
v=V2x9.81x40 =28.01m/s

Therefore, the skier's speed at the bottom of the slope is 28.01 m/s.




Gemini 1'5 4 Gemini 1.5 Pro b

Feature Lc text understanding (experimental)
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Gemini 1.5 /O upgrades

aini 1.5 Flash

Much faster, smaller model, while preserving
great performance on benchmarks: best
quality/cost ratio

Expanding Gemini 1.5 Pro to
2M context!

Expanded context window to 2 million tokens



Gemma open models .

A family of lightweight, state-of-the art open models built from the
same research and technology used to create the Gemini models




Gemma 1.0

Qased in Feb

best open models at size

7B - most useful, broadly
portable/deployable

@ 2B - better for CPU/on device

Established best performance across several
benchmarks, esp impressive on MMLU,
MATH and Coding.




Gemma 2.0

Imsys.org &
‘ @Llmsysorg
We also collect more votes for Gemma-2-27B (now 5K+) for the past few
. days. Gemma-2 stays robust against Llama-3-70B, now the new best
Released in May 2024 P —

Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)
27B - most capable open model from
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Al @ Google

Turn the diversity of Al investments in a
multiplier, supercharging progress.

O 8 public products with 1B+ active users
O 100s of teams working on models and applications leveraging generative Al
O Long term view of customer interactions across huge diversity of tasks

O Experience leverage a massive diversity of data sources




20 years of ML Workflows at Google

Product Sessionized .
Experiences ® ©) Logs ()1 Features (5 | Training (® | ML Model




Emerging Al Workflows based on Generative Al
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Emerging Al Workflows based on Generative Al
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Gemini Adaptation Lifecycle (A conceptual view)
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Gemini Adaptation Workflows

Types of Workflows:

1.

Training/Tuning
workFlows - SFT, RLHF,
LoRA, Prompt eng.
Deployment workFlows -
Checkpoint Selection,
Quantization, Model export
Validation

Evaluation workflows -
human eval, auto eval
Distillation workFflows -
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Characteristics & Challenges with GenAl Workflows

1. Heterogenous training phases (SFT, RLHF, LoRA, etc)
a. Specialized training / tuning frameworks & services to leverage TPU/GPUs efficiently.
2. JAX-based model training, tuning and serving. JAX is efficient.
a. More JAX-based tooling is needed.
3. Many human touchpoints in human rating workflows
a. Causing delays in end-to-end latency to have ratings needed.
4. Different types of evals and eval criteria.
a. Evaluate models for Creativity, Factuality, Safety, Persona, etc. Sophisticated eval tools needed.
5. Different types of model scraping & inference needs - Interactive and Batch
a. Covering different spectrums in efficiency frontier of cost vs responsiveness.
6. Model deployments and serving are complex
a. Serving LoRA adapters, 2M context windows, etc.
7. LM application development patterns
a. RAG, Agentic workflows need very different tooling and have different user journeys.



Thank you!

Questions?

LinkedIn:

17


https://www.linkedin.com/in/prakashchockalingam/

