
September 4-5, 2024

Sunnyvale, CA. USA

Ordered Processing In
Apache Beam

Sergei Lilichenko

Intro

2

● Solutions Architect at Google Cloud

○ Write Beam pipelines as proof-of-concepts for customers

and internal teams

○ Publish blogs and architecture guides

○ Sometimes contribute to the Beam repo

● Enterprise architect and tech lead (FSIs, startups) in my prior life

Agenda

3

Is there more that’s coming?

What is available in Apache Beam?

Lessons learned

What is ordered processing and why do we care?

… and how does it work?

Why Beam and not [fill in blanks]?

Why ordered processing?

4

Use Case: Order book building

5

Order Book Processing in Financial Services. “An order book

lists the number of shares being bid on or offered at each price

point, or market depth.”

An order book is created per security or financial instrument and

must be created in the strict sequence - no gaps in events and

events should be applied exactly as they happened in time.

Use Cases: IoT processing, click stream analysis

6

Processing data from sensors. For the use cases where it’s
important to process data in the exact sequence, for example
to be able to catch an anomaly between two subsequent
sensor reads.

Close-to-real-time clickstream analytics. Typically done
using time windows to collect all the events for a particular
time period, but it requires waiting for the window to close.
Ordered processing can reduce processing latencies by
guaranteeing that all previous events has been received.

Generic system requirements

7

● Ability to simultaneously handle ordered processing of thousands or millions of individual

ticker symbols, sensors, users, etc.

● Ability to maintain the state of processing

● Ideally, use no additional services for processing besides Beam-provided facilities

● Low latency streaming processing

● Batch processing for historical analysis

Ordered processing can be complex

8

Not every messaging system supports ordered delivery

of the messages to the processing system.

The order of publishing is not always the order of

processing.

Coding large scale ordered processing “from scratch” is

difficult. Many customers don’t have sufficient expertise

in their development teams, or it’s not their core

business.

Infrastructure Code

Beam pipelines to the rescue…

9

● Best streaming product on the market

● Works really well with Pub/Sub and Kafka

● Fully managed, great observability, etc.

● Highly scalable and capable of processing millions of

events per second

● Automatically manages work distribution and

synchronization per key

… but …

● Had limited support for ordered processing

out-of-the-box

● Programming model takes time to learn

What is available today?

10

“ordered” extension added in release 2.56.0

11

● A generic Apache Beam transform that
processes elements in order for each key

● Several interfaces customers need to
implement. Implementation will not require
knowledge of advanced Apache Beam concepts

A reference implementation of a complex customer
use case (order book processing) in GitHub’s
GoogleCloudPlatform/dataflow-ordered-processing
project

In some cases, DoFn.RequiresTimeSortedInput
annotation or “sorter” extension can work.

Can any data be processes in order?

12

Prerequisites

● Data must be in a KV<Key, KV<Long, Event>> shape, where the Long key

is the sequence number

● There should be no gaps in the sequence for a particular key

● Initial sequence can be any number

● Optionally, there is a way to know the end of a sequence

● The pipeline needs to be written using Java SDK (multi-language

pipelines can be used to call this transform from Python/Go pipelines)

mutate update

manage

processing
results

status
updates

buffered
events

buffered
events

mutable state

processing
status

B
ea

m
 S

ta
te

Provided

Customer implementation

O
rd

er
ed

 E
ve

nt
 P

ro
ce

ss
or

examine

Mutable State Processing Status

Process Element

Event Examiner

Why does it work?

14

● Beam guarantees that only a single stateful DoFn will process a PCollection’s elements at

any time for a pair of key/window

● Buffered events are stored in the OrderedListState, which allows for efficient insertion of the

elements and efficiently retrieves the elements sorted by the sequence number.

● There is no excessive memory pressure because the buffered elements are not stored in

memory and are not sorted in memory.

How hard is it to use?

15

Isn’t it too complex
for most customers?

● All the heavy lifting is done by the generic transform

● Customer only needs to implement several interfaces in plain Java

● No advanced knowledge of Apache Beam is required

● References implementation and documentation provides the jump

start

How practical is it?

16

Isn’t it too simplistic
for sophisticated
cases?

● An FSI customer successfully implemented their order book
processing using earlier version of the code

● Reference GitHub project implements a use case of an
above-average complexity

● OrderedEventProcessor produces processing status
updates which can be used to monitor processing progress
per key

● The transform has advanced customization options
● All the code is open sourced. Customers can request FRs or

can clone and customize the solution

What about the performance?

17

It works well. This approach will have lower latency than
many other solutions which require waiting until all data
is received before it can be sorted and processed.

Example: 100M orders for 5,000 securities (⅕ of typical
Nasdaq trading daily volume) were processed under 19
minutes.

Ordered processing performance will depend of
maximum number of elements for a particular key (e.g.,
security).

Is it expensive?

18

No. Under normal circumstances (events arriving mostly in order) the
ordered transform performs similarly to many core SDK transforms.

Example: processing 100M orders for 5,000 securities was estimated to
cost under $6 when using new Streaming billing model. This doesn’t
include Pub/Sub and BigQuery costs, just direct Dataflow costs.

Place Image Here

End result

This is how a fully functional pipeline

looks like. The complexity of the order book

building is hidden inside a high level Beam

transform.

The developer can focus on how to get the

data in and how to persist the results of

processing. BigQuery is just one option here,

The data can be stored anywhere.

Proprietary + Confidential

Called by the generic transform to

describe the event. Needs to implement

only three methods.

Event Examiner

@Override
public boolean isInitialEvent(long sequenceNumber, OrderBookEvent event) {
 // Assume all trades for a day will start with 1.
 return sequenceNumber == 1L;
}

@Override
public OrderBookMutableState createStateOnInitialEvent(OrderBookEvent event) {
 OrderBookMutableState orderBookMutableState =

new OrderBookMutableState(depth, withTrade);
 orderBookMutableState.mutate(event);
 return orderBookMutableState;
}

@Override
public boolean isLastEvent(long sequenceNumber, OrderBookEvent event) {
 return event.getLastContractMessage();
}

Proprietary + Confidential

Implements the business logic of

processing the events.

Mutable State

 OrderBookMutableState(int depth, boolean withTrade) {
 this.depth = depth;
 this.withTrade = withTrade;
 this.orderBookBuilder = new OrderBookBuilder();
 }

 @Override
 public void mutate(OrderBookEvent event) {
 orderBookBuilder.processEvent(event);
 }

 @Override
 public MarketDepth produceResult() {
 return orderBookBuilder.getCurrentMarketDepth(depth, withTrade);
 }

Proprietary + Confidential

Configuration class. Primary purpose is to

provide the event examiner to the generic

transform. Parent class provides the

default implementations for most of the

required methods.

Handler
public OrderBookOrderedProcessingHandler(int depth, boolean withLastTrade) {
 super(OrderBookEvent.class,

SessionContractKey.class,
OrderBookMutableState.class,

 MarketDepth.class);
 this.depth = depth;
 this.withLastTrade = withLastTrade;
}

@Override
public EventExaminer<OrderBookEvent, OrderBookMutableState> getEventExaminer(){
 return new OrderBookEventExaminer(depth, withLastTrade);
}

Proprietary + Confidential

Finally, this is how the processing is done.

The input is transformed into the required

KV<Key, KV<Long, Event>> shape first,

and then the generic ordered event

processor does the rest.

Ordered Event
Processor
Transform OrderedEventProcessor<OrderBookEvent, SessionContractKey, MarketDepth,

 OrderBookMutableState> orderedProcessor =
 OrderedEventProcessor.create(handler);

 return input
 .apply("Convert to KV", ParDo.of(new ConvertOrderBookEventToKV()))
 .apply("Produce OrderBook", orderedProcessor);

Proprietary + Confidential

A bit of Beam knowledge is still needed;

specifically around specifying coders for

classes.

They are used for serialization and

deserialization of state and data

elements.

Coders

 @Override
 public void encode(OrderBookMutableState state, OutputStream out)

throws IOException {
 intCoder.encode(state.getDepth(), out);
 booleanCoder.encode(state.isWithTrade(), out);
 mapCoder.encode(state.getPrices(), out);
 orderBookEventCoder.encode(state.getLastOrderBookEvent(), out);
 }

 @Override
 public OrderBookMutableState decode(InputStream inStream)

throws IOException {
 int depth = intCoder.decode(inStream);
 boolean withTrade = booleanCoder.decode(inStream);
 Map<Long, Long> prices = mapCoder.decode(inStream);
 OrderBookEvent lastOrderBookEvent = orderBookEventCoder.decode(inStream);
 OrderBookMutableState orderBookMutableState = new OrderBookMutableState(

depth, withTrade, prices, lastOrderBookEvent);
 return orderBookMutableState;
 }

How do I start using this transform?

25

Check out the unit tests for the “ordered” extension at
https://github.com/apache/beam/tree/master/sdks/java/extensions/ordered

OS GitHub repo
(https://github.com/GoogleCloudPlatform/dataflow-ordered-processing)

● Reference implementation of the order book processing
using a fictitious stock exchange

● Cookbook on how to implement ordered processing
● Simulator to generate desired volume and “shape” of data
● Terraform scripts to create infrastructure
● BigQuery queries to perform data and latency analysis

https://github.com/apache/beam/tree/master/sdks/java/extensions/ordered
https://github.com/GoogleCloudPlatform/dataflow-ordered-processing

Is there more coming?

26

● Another mode of processing ordered events - when

there is a global sequence rather than a per key

sequence

● A blog will be published

● An update of the Beam documentation

● Will consider creating wrapper transforms in other SDKs

(Python, Go) using multi-language pipelines

buffered
events

processing
results

Mutable State

mutate

Processing Status

Process Element

status
updates

update

manage
buffered
events

mutable
state

processing
status

O
rd

er
ed

 E
ve

nt
 P

ro
ce

ss
or

B
ea

m
 S

ta
te

Provided

Customer implementation

Event
Examiner

examine

G
lo

ba
l S

ig
na

l T
ra

ck
er Pluggable

Combiner

To KV<Key, KV<Long, Event>>

Side input

Lessons learned

28

● You, yes - you, can write somewhat complex transforms

● There are a lot of undiscovered gems in Beam States (e.g., OrderedListState)

● Timer concepts are supposed to be trivial, but they are not

● Unit tests are life savers, esp. for streaming pipelines

● Nothing replaces actual integration tests. Every runner has its limitations.

● You have to test at scale and you have to test adverse conditions.

29

Thank you! Reach out if you have questions:

slilichenko@google.com

https://www.linkedin.com/in/sergei-lilichenko

mailto:slilichenko@google.com

