RAG Data Ingestion Iin
Apache Beam

Jasper Van den Bossche & Konstantin Buschmeier



Empowering Businesses with Al &
Machine Learning

Specialized in:

- Strategic Guidance Al Adoption
and Al governance

- End-to-end ML/AI application
development




An Introduction to RAG
Building a RAG Ingestion Pipeline

Remarks

What will be covered in this talk?




A Gentle Introduction to RAG



Retrieval Augmented Generation

search for relevant pass relevant documents
user enters bed - documents along with question to
a question G GRES using a generative model
semantic search and ask it solve the problem
_ [9)4 > embeo(ohng model vector database gener:‘t[ive
wmoae
1
N I
1 |
} |
e e e e e e e e e e e e e 4

genera‘teo( answer based on Prov‘udeal information



Lexical Search

what is Apacl«e Beam?

Apache [Beam)is o unified model for defining both
)

batch an streaming ola‘ta-para"el Processiv\g Ptpelines

Apacl\e

Flink is an open source stream processing framework

with powe.rFul stream- and batck-(arocessing capalaihties.

cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame hl:rary for
loao(?ng, Joining, aggregating, Filtering, and otherwise manipulating data.



Text Embeddings

0.12%9
-0.8841
0.7683

Apacke Beam is a unified model for o(e*F?ning both >
batch and streaming olata-para“el processing pipehnes




Transform Documents in a Collection of Embedding Vectors

I'm a fan of L\ip-lr\op music. O
Al pastor tacos always hit the spot. O

I enjoy listening to hip-h O
O Al pastor tacos are one of my favorite dishes. enjey istening Lo Wpthop

O Hip-hop is one of my favorite genres.
Al pastor tacos are super tasty. O

Cycl?ng is one of my favorite weekend activities. O

O I love riding my bike during weekends.

I really enjoy bike rides during the weekends. O



Nearest Neighbors Similarity Search

I'm a fan of L\EP-L\OP music. O
Al pastor tacos always hit the spot. O

I enjoy listening to hip-h O
O Al pastor tacos are one of my favorite dishes. enjoy listening Lo hip-hop

Al pastor tacos are super tasty. O H;P-L‘OP B " T genres. O &

What music genres do you like?

Ct,cliug is one of my favorite weekend activities. O

O I love riohng wmy bike Juring weekends.

I really enjoy bike rides during the weekends. O



Store Embeddings in a Vector Database

original
document

sMMMQr‘/

<doe 1>

{summarized doc 1>

ingestion timestamp

24/08/2024 1#:18

embeo{ohng

[0.26%, 0.312, ... 0.972]

<doec 2>

{summarized doc 2>

24/08/2024 1#:21

[0.358, 0.614, ... 0.58%]

<doe N>

{summarized doc N>

29/0%8/2024 09:54

[0.111, 0.22%, ... 0.374]




What makes a good embedding?

/ im(aortamt context
what services o(oes offer?

We're offering advice on how to effectively build AL solutions within your organization,
Rmplementing on a AL governance Stra‘tegt/.
Besides advice we also build custom end to end AI solutions.

% SBUEMMM i



Preprocessing: Chunking

-
—
.

Cl«unking



Preprocessing: Summarization

Summarization

% SBUEMMM g



Advanced Techniques to Improve Retrieval

retrieved | relevance
documents score
e 0.97
doe 14
Question 1
— 0.a1 =L
= =——| ——= Question 2
doc 87
Question 3
Generate Hypo‘tl«etical Questions
— from Documents
= 0.54
e 2 3=/A\M
% SUMMIT 14



Building a RAG Ingestion Pipeline



Why Apache Beam?




Batch Processing

= — 5 > Vector Database
p— \_ J




Stream Processing

L

L) {1

Vector Database

I

Streom Processing for Upo(ates n Knowleo(ge Base

% SBUEMMM 8



O/
Q

SO
o




High-Level Overview of RAG Ingestion Pipeline

Extract text from documents

L

Preprocessing of extracted text

!

Generate text embeddings

!

Write emlaeo(ohng + metadata

to vector database gg 3 — M

SUMMIT 20




Step 1: Text Extraction

Attention Is All You Need

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research . .
avaswani@google.com noam@google.com nikip@google.com usz@google.com TL\e Aommomt sequeuce trausduct‘on Mo‘*els are Lased on coMPlex recurrent o
convolutional neural networks that include an encoder and a decoder. The best
Llion Jones* Aidan N. Gomez" ' Lukasz Kaiser* performing models also connect the encoder and decoder tkrougk an attention
Google R h University of Toronto Google Brain hant . l bt h
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com mechanism. We propose a new simple network arc| ‘tect“rel the TTGV\SFOY‘M&I",

based solelt/ on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
= be superior in quality while being wore parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract translation task, improving over the existing best results, including
S uence transduction models are based on complex recurrent or ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
co:;/olugonm ngulralalnetworks me:L incluc‘i:j an elhcxéder :nd a decoder. The best our wodel establishes a new single-model state-of-the-art BLEU score of 41.8 after
‘orming models also connect the encoder and decoder through an attention R . . ..

1lfechzu]is;i. ‘We propose a new simple network architecture, thgehTransformer, t"“"""g for 3.5 do“fs on e'fjl‘\t GPUSI a swall fraction of the tm"‘"‘f] costs of the
based solely on attention mechanisms, dispensing with recurrence and convolutions best models from the literature. We show that the Transformer genemlizes well to
entirely. Experiments on two machine translation tasks show these models to . . N . . N

be superior in quality while being more parallelizable and requiring significantly other tasks l1"/ GPPI‘/"\Q it Success{:“"‘/ to E"ﬂl‘SL‘ co"st't“e"c‘/ parsing both with

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

large and limited training data.

3=/AM

SUMMIT 21




class ExtractTextFromPDF(beam.DoFn):
def process(self, element):
try:
with fitz.open(element) as doc:
text = '\n'.join([page.get_text() for page in
doc])
yield text

22



Step 2: Preprocessing Text Data for Embedding

Summary with speci{:ica“t/
original text in document extracted details and context

> summarization >

model -

language model Fine-tuned fFor Summarizing documents

%SUMMIT 23



class CohereSummarizationModelHandler(CohereModelHandler):

def run_inference(self, batch: Sequence[Dict[str, Any]], model: cohere.Client,
inference_args: Optional[Dict[str, Any]] = None) -> Iterable[PredictionResult]:
inference_args = {} if not inference_args else inference_args
summaries = []
for element in batch:
text = element['text']
# The Cohere summarization models do not support inputs smaller than 250 character
if len(text) > 250:
# Send the text to the summarization model, along with optionally configured parameters
summary_response = model.summarize(text=text, **self.config)
# Extract the summary from the response returned by the API
summary = summary_response.summary
else:
# Texts shorter than 250 characters aren't summarized
summary = text
summaries.append(summary)

# Add the summaries to the output dictionaries along the other blogs

updated_list_of_dicts = [{**element, 'summary': summary} for element, summary in zip(batch,
summaries)]

# Return the output dictionaries as a batch of PredictionResult objects

return [PredictionResult(x, y) for x, y in zip(batch, updated_1list_of_dicts)]

24



Step 3: Embedding the Summarized Documents

summarized
document

—

emloeo(ohng
moo(el

vector representat?on

of the

summarized document

— =

0.1279
-0.8341
0.76383

0.7724
-0.4621
-0.3327

25



class CohereEmbeddingModelHandler(CohereModelHandler):

def run_inference(self, batch: Sequence[Dict[str, Any]], model: cohere.Client,
inference_args: Optional[Dict[str, Any]] = None) ->
Iterable[PredictionResult]:
inference_args = {} if not inference_args else inference_args
# Create a list of inputs that will be sent to the embedding model
texts = [element[self.input_key] for element in batch]

# Send the text to the embedding model, along with optionally configured parameters
response = model.embed(texts=texts, **self.config)

# Extract the embeddings from the response returned by the API
embeddings = response.embeddings

# Return a list of PredictionResult

return |
PredictionResult(example=element, inference=embedding)
for element, embedding
in zip(batch, embeddings)



Step 4: Writing to a Vector Database

olZ:;j::i £ Summary ingestion timestamp embeo{ol?ng

<doe 1> | <summarized doc 1> 24/08/2024 17:18 [0.26%, 0.312, ... 0.972]

cdoc 25 | <cummarized doc 25> | 24/08/2024 17:21 | [0.35%, 0.614, ... 0.587]

<doc N> | <summarized doc N> | 29/08/2024 0a:54¢ | [0.111, 0.22%, ... 0.374]




class StoreWeaviate(beam.DoFn):

def process(self, prediction_results: List[PredictionResult],
**kwargsdollection = self.weaviate_client.collections.get(self.collection)

with collection.batch.dynamic() as batch:
for prediction_result in prediction_results:
batch.add_object(
properties=prediction_result.example,
vector=prediction_result.inference

28



Extract text from documents

!

Preprocessing of extracted text

!

Generate text embeddings

!

Write embedding + metadata
to vector database

29



Things to Consider

API Quota and Rate Limits

> +
AVOdlaBili‘ty of LLM APIs

Demand fFor LLMs




Bonus: Using the RAG Ingestion
Pipeline in Production



Real Time Data Ingestion: Change Data Capture Architecture

r o=
data source 1 ]_: ETL :9
\ b )
r re—=—==° raw storage < da:ge vector
data source 2 : ETL :%‘ database > ava database
L e capture
( | T A
data source 3 J_: ETL :% : l
N Looood | RAG Ingestion Pipeline :
]
' )
' I
D e e e e e e e e e = J

[Optional] Directly Delete Elements

%SUMMIT 32



Real Time Data Ingestion: Change Data Capture Architecture

queue

= Feoe==
[Jn‘ta source 1 _: ETL :9

J Looood

N r----A raw storage Cbange veetor
[O{ata source 2 _: ETL :' >t database —> ote > e database

capture

J Loocood

N rTTT-A
[o(ata source 3 _: ETL :%

- Loeocood

queue

% SBUEMMM &



Future of RAG



O

X S=A

Mult;MOJGI RAG: RAG uS?ng Images, v;deos, soe



O

Grapl'\ RAG: RAG using Knowledge Grapl‘\s

X S=A




Conclusion



Vector Database

[ W

I (AL

Batch Processing for Ingesting Exesting Datasets to Knowleo(ge Base
+

Stream Processing for Upo(ates n Knowleo(ge Base

%SUMNHT 38




Or/C
|
V/QM,“\
TN\
S0~ A
““A A\ /A

/> VI‘\V‘f
N4




Extract text from documents

Preprocessing of extracted text

Generate text e.ml:eololings

Write embedding + metadata
to vector database

Flexibility to Create Different Transforms

% SUMMM




https://www.linkedin.com/in/jasper

-van-den-bossche/

Thank you!

Questions?

https://www.linkedin.com/in/konst
antin-buschmeier/

https://www.ml6.eu/



https://www.linkedin.com/in/jasper-van-den-bossche/
https://www.linkedin.com/in/jasper-van-den-bossche/
https://www.linkedin.com/in/konstantin-buschmeier/
https://www.linkedin.com/in/konstantin-buschmeier/
https://www.ml6.eu/

