Apache Beam for RAG

Ingestion and Enrichment Pipeline

Ayush Pandey

Introduction

Data Science Grad Student
Google Summer of Code 2023 - Apache Cloudstack
Google Summer of Code 2024 - Apache Beam

Currently working as a ML Engineer at MicroStrategy

What is RAG ?

What is RAG ?

e Al Framework, which is used for generating relevant and accurate text by
combining the Large Language Models with traditional information
retrieval system.

e Retrieval - Used for retrieval of relevant chunks from the knowledge base
based on the semantic search.

e Augment - Augmenting the relevant chunks retrieved from knowledge base
to the prompt given as input.

e Generation - Generating the text using LLM’s based on the retrieved chunks

and the given prompt.
% SUMM | T 4

Why RAG and why is it so popular ?

LLMs are trained on general corpora which makes it hard to generate the
relevant text or domain specific text and they hallucinate.
The foundational models are trained offline, thus becomes hard to

incorporate the new data.
To be able to make the model generate domain specific data, we need to

finetune the model which is a costly and time consuming process.

RAG Architecture

Search Relevant] ‘ Knowledge
Information J Sources

Relevant
. Information
(3) for

Enhanced

Context

Generated
Text (
Response

Prompt
g +
" 4) Query

Enhanced
Context Large Language Model EndPoint

Beam & RAG

Implementing RAG

e Foundational Beam parts:

o ML Transform
o Enrichment

e Writing custom 10 class for vector database
e Implementing chunking strategy
e Using Beam’s MLTransform module to transform the data and use
SentenceTransformerEmbeddings to generate embeddings.
e Used beam's EnrichmentSourceHandler for searching the relevant
chunks in the vector database.
% SUMM | T 10

RAG Ingestion Pipeline

Documents

Chunks

Embeddings

Beam Equivalent

PTransform 1

PCollection

PTransform 3

PCollection

PTransform 4

PCollection

PCollection

|

PTransform 2

Ingestion

PTransform 1: Transforms document in chunks

PTransform 2: a platform aware transform to setup schema and writes
document to 10 Sink

PTransform 3: MLTransform's SentenceEmbeddingTransform - supports many
models

PTransform 4: a platform aware transform to write embeddings into ingested
document with transform 3 - nature of MLTransform => 2 inserts

%SUMMIT 13

#Insertion Pipeline

artifact location = tempfile.mkdtemp()
generate_embedding fn = SentenceTransformerEmbeddings(model name='all-MinilM-L6-v2',
columns=['title’, 'text'])
with beam.Pipeline() as p:
embeddings = (

P

| "Read data” »» beam.Create(contents)

| "Generate text chunks" »» ChunksGeneration(chunk size = 500, chunk overlap = @, chunking strategy = ChunkingStrategy.SPLIT BY TOKENS)
| "Insert document in Redis" »» InsertDocInRedis(host="127.0.0.1',port=6379, batch _size=10)

| "Generate Embeddings" »» MLTransform(write artifact location=artifact location).with transform(generate embedding fn)

| "Insert Embedding in Redis" »» InsertEmbeddingInRedis(host="127.0.0.1",port=6379, batch size=10,embedded columns=['title', text'])

class ChunksGeneration(PTransform):
=m"ChunkingStrategy is a "~ ~PTransform -~ that takes = ~~PCollection -~ of
key, value tuple or 2-element array and generates different chunks for documents.

def __dinit_ (
self,
chunk_size: int,
chunk_overlap: int,
chunking strategy: ChunkingStrategy

Args:
chunk_size : Chunk size is the maximum number of characters that a chunk can contain
chunk_overlap : the number of characters that should overlap between two adjacent chunks
chunking_strategy : Defines the way to split text

Returns:
:class: ~apache_beam.transforms.ptransform.PTransform"

self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.chunking strategy = chunking strategy

def expand(self, pcoll):
return pcoll \
1 "Generate text chunks” >> beam.ParDo(_GenerateChunksFn(self.chunk_size,
self.chunk_overlap,
self.chunking strategy))

class _GenerateChunksFn(DoFn):
="rnAbstract class that takes in ptransform
and generate chunks.

def __ _dinit (
self,
chunk_size: int,
chunk_overlap: int,
chunking strategy: ChunkingStrategy

self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.chunking strategy = chunking strategy

def process(self, element, *args, **kwargs):

For recursive split by character
if self.chunking strategy == ChunkingStrategy.RECURSIVE SPLIT_BY CHARACTER:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=1len,
is_separator_regex=false,

)

For split by character
elif self.chunking strategy == ChunkingStrategy.SPLIT_BY CHARACTER:
text_splitter = CharacterTextSplitter(
chunk size=self.chunk size,

Enrichment
Pipeline

RAG Enrichment

Embeddings

search in DB

Prompt/Query

Vector DB
Connector

Relevant Context

Beam Enrichment Equivalent

PCollection

PTransform 3

PTransform 2

PTransform 1
PCollection

> Vector DB
Connector

Enriched Result

Retrieval/Enrichment transforms

PTransform 1: transforming data to PCollection using root PTransform
beam.create for loading user questions in batch mode

PTransform 2: transforming prompt questions PCollection to embedding
PCollection using MLTransform as before

Enrichment: load additional context from vector DB to enrich user’s questions
before augmented generation

% SBUEMMM e

Dv

Enchriment Pipeline

data = [{'text':'What is Anarchy 2'}]
artifact_location = tempfile.mkdtemp()
generate_embedding fn = SentenceTransformerEmbeddings(model name='all-MinilM-L6-v2",

columns=[‘text'])

redis_handler = RedisEnrichmentHandler(redis host="127.0.0.1", redis_port=6379)

with beam.Pipeline() as p:

- (

"Generate Embedding" »> MLTransform(write artifact location=artifact location).with transform(generate embedding fn)
“Enrich W/ Redis" »» Enrichment(redis_handler)

P
| “Create” > beam.Create(data)
|
|
| "Print" >> beam.Map(print)

Enrichment Details

For this firstly we create an index in the vector database for searching of
relevant text.

Using beam’'s EnrichmentSourceHandler we create Vector DB queries
for fetching relevant contexts.

Perform vector search using the search query and return the relevant
document chunks and its embeddings to enrich the user’s questions
before augmented generation.

% SBUEMMM 2l

class RedisEnrichmentHandler(EnrichmentSourceHandler[beam.Row, beam.Row]):
"""A handler for :class: apache_beam.transforms.enrichment.Enrichment”
transform to interact with redis vector DB.

Args:
redis_host (str): Redis Host to connect to redis D8
redis_port (int): Redis Port to connect to redis DB
index_name (str): Index Mame created for searching in Redis DB
vector_field (str): vector field to compute similarity score in vector DB
return_fields (list): returns list of similar text and its embeddings
hybrid_fields (str): fields to be selected
k (int): Value of K in KNN algorithm for searching in redis

def __init_ (
self,
redis_host: str,
redis_port: int,
index_name: str = "embeddings-index”,
vector_field: str = "text_vector™,
return_fields: 1list = ["id", "title", "url"”, "text"],
hybrid_fields: str = "*",
k: int = 2,

self.redis_host = redis_host
self.redis_port = redis_port
self.index_name = index_name
self.vector_field = vector_field
self.return_fields = return_fields
self.hybrid_fields = hybrid_fields
self.k = k

self.client = None

def __enter__ (self):

connect to the redis DB using redis client."™™"
self.client = redis.Redis(host=self.redis_host, port=self.redis_port)

def __call__ (self, request: beam.Row, %args, **kwargs):
Reads a row from the redis Vector DB and returns
a "“Tuple of request and response.

Args:
request: the input "beam.Row to enrich.

read embedding vector for user query
embedded_query = request[self.vector_field.strip(’_vector')]

Prepare the Query
base_query = f'{self.hybrid_fields}=>[KNN {self.k} @{self.vector field} Svector AS vector_score]’
query = (
Query(base_query)
.return_fields(*self.return_fields)
.dialect(2)
)

params_dict = {"vector”™: np.array(embedded_query).astype(dtype=np.float32).tobytes()}

perform vector search
results = self.client.ft(self.index_name).search(query, params_dict)

return beam.Row(text=embedded_query), beam.Row(docs=results.docs)

Inference Pipeline

Beam Enrichment Pipeline

Embeddings
Model

’@or DB

Retrieval Results

Query/Prompt

Conclusion

Conclusions

e RAG is fairly streamlined to be implemented with Beam's existing tools at scale for rapid
prototyping and deployment.
e Gaps Observed:

o MLTransform has been implemented in a way that it will transform data from 1
PCollection to another. This means we have to execute 1 insert and 1 update query
instead of 1 insert query.

o Less native Python support for vector DB queries meant writing the custom 10
class or python clients for redis vector database and opensearch vector database.

e Next Steps:
o Integrate custom IO Connectors into Beam foundation packages for reusability
o Expand augmented generation step with Beam's inference APIs.

%SUMMIT 26

Thank you!

Questions?

Github: itsayushpandey
Linkedin :

27

https://www.linkedin.com/in/itsayushpandey/
https://www.linkedin.com/in/itsayushpandey/

