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Introduction

● Data Science Grad Student

● Google Summer of Code 2023 - Apache Cloudstack

● Google Summer of Code 2024 - Apache Beam

● Currently working as a ML Engineer at MicroStrategy
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What is RAG ?
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What is RAG ?

● AI Framework, which is used for generating relevant and accurate text by 
combining the Large Language Models with traditional information 
retrieval system.

● Retrieval - Used for retrieval of relevant chunks from the knowledge base 
based on the semantic search.

● Augment - Augmenting the relevant chunks retrieved from knowledge base 
to the prompt given as input.

● Generation - Generating the text using LLM’s based on the retrieved chunks 
and the given prompt.
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Why RAG and why is it so popular ?
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Why RAG ?

● LLMs are trained on general corpora which makes it hard to generate the 
relevant text or domain specific text and they hallucinate.

● The foundational models are trained offline, thus becomes hard to 
incorporate the new data. 

● To be able to make the model generate domain specific data, we need to 
finetune the model which is a costly and time consuming process.
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RAG Architecture
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Beam ⇔ RAG
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Implementing RAG

● Foundational Beam parts:
○ ML Transform
○ Enrichment

● Writing custom IO class for vector database
● Implementing chunking strategy 
● Using Beam’s MLTransform module to transform the data  and use 

SentenceTransformerEmbeddings to generate embeddings.
● Used beam’s EnrichmentSourceHandler for searching the relevant 

chunks in the vector database.
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Ingestion

PTransform 1: Transforms document in chunks

PTransform 2: a platform aware transform to setup schema and writes 
document to IO Sink

PTransform 3: MLTransform’s SentenceEmbeddingTransform - supports many 
models

PTransform 4: a platform aware transform to write embeddings into ingested 
document with transform 3 - nature of MLTransform => 2 inserts
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Example Ingestion Pipeline
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Enrichment 
Pipeline
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Retrieval/Enrichment transforms

PTransform 1: transforming data to PCollection using root PTransform 
beam.create for loading user questions in batch mode

PTransform 2: transforming prompt questions PCollection to embedding 
PCollection using MLTransform as before

Enrichment: load additional context from vector DB to enrich user’s questions 
before augmented generation
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Example Enrichment Pipeline
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Enrichment Details

● For this firstly we create an index in the vector database for searching of 
relevant text.

● Using beam’s EnrichmentSourceHandler we create Vector DB queries 
for fetching relevant contexts.

● Perform vector search using the search query and return the relevant 
document chunks and its embeddings to enrich the user’s questions 
before augmented generation.
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Inference Pipeline
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Conclusion
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Conclusions

● RAG is fairly streamlined to be implemented with Beam’s existing tools at scale for rapid 
prototyping and deployment.

● Gaps Observed:
○ MLTransform has been implemented in a way that it will transform data from 1 

PCollection to another. This means we have to execute 1 insert and 1 update query 
instead of 1 insert query.

○ Less native Python support for vector DB queries meant writing the custom IO 
class or python clients for redis vector database and opensearch vector database.

●  Next Steps:
○ Integrate custom IO Connectors into Beam foundation packages for reusability
○ Expand augmented generation step with Beam’s inference APIs.
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Thank you!
Questions?

Github: itsayushpandey

Linkedin : 
https://www.linkedin.com/in/itsayushp
andey/

https://www.linkedin.com/in/itsayushpandey/
https://www.linkedin.com/in/itsayushpandey/

