
September 4-5, 2024

Sunnyvale, CA. USA

Apache Beam for RAG

Ayush Pandey

Ingestion and Enrichment Pipeline



Introduction

● Data Science Grad Student

● Google Summer of Code 2023 - Apache Cloudstack

● Google Summer of Code 2024 - Apache Beam

● Currently working as a ML Engineer at MicroStrategy

2



What is RAG ?

3



What is RAG ?

● AI Framework, which is used for generating relevant and accurate text by 
combining the Large Language Models with traditional information 
retrieval system.

● Retrieval - Used for retrieval of relevant chunks from the knowledge base 
based on the semantic search.

● Augment - Augmenting the relevant chunks retrieved from knowledge base 
to the prompt given as input.

● Generation - Generating the text using LLM’s based on the retrieved chunks 
and the given prompt.

4



Why RAG and why is it so popular ?

5



Why RAG ?

● LLMs are trained on general corpora which makes it hard to generate the 
relevant text or domain specific text and they hallucinate.

● The foundational models are trained offline, thus becomes hard to 
incorporate the new data. 

● To be able to make the model generate domain specific data, we need to 
finetune the model which is a costly and time consuming process.

6



RAG Architecture

7



Only use images for 
which you have 
permission/copyright

8



Beam ⇔ RAG

9



Implementing RAG

● Foundational Beam parts:
○ ML Transform
○ Enrichment

● Writing custom IO class for vector database
● Implementing chunking strategy 
● Using Beam’s MLTransform module to transform the data  and use 

SentenceTransformerEmbeddings to generate embeddings.
● Used beam’s EnrichmentSourceHandler for searching the relevant 

chunks in the vector database.

10



11



12



Ingestion

PTransform 1: Transforms document in chunks

PTransform 2: a platform aware transform to setup schema and writes 
document to IO Sink

PTransform 3: MLTransform’s SentenceEmbeddingTransform - supports many 
models

PTransform 4: a platform aware transform to write embeddings into ingested 
document with transform 3 - nature of MLTransform => 2 inserts

13



Example Ingestion Pipeline

14



15



Enrichment 
Pipeline

16



17



18



Retrieval/Enrichment transforms

PTransform 1: transforming data to PCollection using root PTransform 
beam.create for loading user questions in batch mode

PTransform 2: transforming prompt questions PCollection to embedding 
PCollection using MLTransform as before

Enrichment: load additional context from vector DB to enrich user’s questions 
before augmented generation

19



Example Enrichment Pipeline

20



Enrichment Details

● For this firstly we create an index in the vector database for searching of 
relevant text.

● Using beam’s EnrichmentSourceHandler we create Vector DB queries 
for fetching relevant contexts.

● Perform vector search using the search query and return the relevant 
document chunks and its embeddings to enrich the user’s questions 
before augmented generation.

21



22



Inference Pipeline

23



24



Conclusion

25



Conclusions

● RAG is fairly streamlined to be implemented with Beam’s existing tools at scale for rapid 
prototyping and deployment.

● Gaps Observed:
○ MLTransform has been implemented in a way that it will transform data from 1 

PCollection to another. This means we have to execute 1 insert and 1 update query 
instead of 1 insert query.

○ Less native Python support for vector DB queries meant writing the custom IO 
class or python clients for redis vector database and opensearch vector database.

●  Next Steps:
○ Integrate custom IO Connectors into Beam foundation packages for reusability
○ Expand augmented generation step with Beam’s inference APIs.

26



27

Thank you!
Questions?

Github: itsayushpandey

Linkedin : 
https://www.linkedin.com/in/itsayushp
andey/

https://www.linkedin.com/in/itsayushpandey/
https://www.linkedin.com/in/itsayushpandey/

