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Forecasting
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Context
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● Forecasting is crucial for Lyft to efficiently manage it’s marketplace and ensure 
optimal service levels.

● Accurate forecasts help align driver availability with rider demand.

● ML models predict supply & demand in real time every minute 
○ on ~4 million gh6, +airports +venues
○ for 60 mins horizon in 5 min buckets

● Influences critical Lyft products, eg.
○ Real time Incentives
○ Dynamic Pricing 
○ Primetime



Streaming Platform
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Circa 2021
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● Internal forks of Flink - 1.10, Beam - 2.18



Current

● Internal forks of Flink - 1.17, Beam - 2.50
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Why Beam 

● Flink ++ (like side inputs, x-lang) 

● Portability across Runtimes

● API abstraction

● Data scientists productive in Python over Java :) 
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Deployment Workflow
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Architecture
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Scale

● Parallelism : 250

● Tasks : 7500 tasks

● Input 
○ ~5 million events per minute for supply
○ ~1 million events per minute for demand

● Task Manager(s) : 30
○ Cpu : 24
○ Memory : 192 GB
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Architecture - I 
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Challenges

● Feature Generation
○ Out-of-band communications to Services
○ Memory Constraints of Long-Running (> 5 mins) Sliding Window Aggregations

○ High checkpointing times and continuous backpressure.
○ Metastable failures - Long GC, Zookeeper

● Model Inference
○ N disparate sinks – throttling
○ Code complexity with M models and R ⊆ M invocation rules.
○ Shadow run models involved launching context-aware shadow pipelines

13



Evolution
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Takeaways

● Decouple data prep (filtering, svc enrichment) from feature eng. (windowed aggregations) 

● Choose partitioning key wisely to limit skewness 

● Filter early, filter often. 

● Use efficient coders - protobuf

● Monitor memory and (try) limit large sliding window aggregations.

● BatchElements to amortize costs. 

● Cache using shared object
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https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.util.html#apache_beam.transforms.util.BatchElements
https://beam.apache.org/documentation/patterns/shared-class/


Backfill

● Streaming jobs can fail due to various reasons:
○ Source / sink failures
○ Transient service failures
○ Upstream data changes

● Onboarding new models require bootstrapping features computed from 
historical time windows
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Backfill Options

● Separate Batch job 
○ Maintain multiple jobs 
○ Recipe for online-offline skewness

● Streaming only 
○ Custom PTransform with Kinesis and File Source
○ Flink Global watermarks for source synchronization to avoid state size explosion
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Learnings
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YAML    
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Tools 

● Custom FlinkStreamingPortablePipelineTranslator to register Flink Kinesis, Kafka, 
S3 connectors with configurable parallelism. 

● Automatically categorize error logs by User or System

● Validation (quasi canary style deployments)

● Analyze Job scale

● Fault Injection tests

20

https://github.com/apache/beam/blob/master/runners/flink/src/main/java/org/apache/beam/runners/flink/FlinkStreamingPipelineTranslator.java


Knobs

● Job 

○ Network buffers

○ Tune Managed memory taskmanager.memory.managed.fraction >  0.4

○ Checkpoint Local Recovery 

○ (Auto) tune CPU and Memory  

○ Bundle size, sdk worker parallelism, task slots.
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https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/memory/network_mem_tuning/


Knobs

● Cluster 

○ Disallow node eviction by autoscaler with pod annotation 
cluster-autoscaler.kubernetes.io/safe-to-evict

○ Use taints & tolerations to pin jobs to single AZ. 

○ Address cluster fragmentation through an automated job re-deploys.

○ Disable DNS caching 
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http://cluster-autoscaler.kubernetes.io/safe-to-evict


(Customer) Surprises

● Head-of-Line Blocking 

● Autoscaling 

● Canary deployments

● Transient Failures → Stop the world → Restart from checkpoint

● Tradeoff in Completeness, Latency and Accuracy
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Summary

● Ease of use

● Templatize best practices

● Simple but robust tools

● Integrate into the ecosystem 

● Shift left
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Plans 
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● SQL 

● Reliability  
○ Load shedding
○ Autoscaling
○ Workload Isolation / Cell based architecture
○ Observability into SDK harness grpc chatter
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Thank you!
Questions?

@maghamravi

https://www.linkedin.com/in/ravimagham/

https://beam.apache.org/case-studies/lyft/

https://www.linkedin.com/in/ravimagham/

