
September 4-5, 2024

Sunnyvale, CA. USA

Real time Forecasting
@ Lyft

 Ravi Magham

Agenda ● Context

● Streaming platform

● Real time Forecasting

● Learnings

● What’s Next

2

Forecasting

3

Context

4

● Forecasting is crucial for Lyft to efficiently manage it’s marketplace and ensure
optimal service levels.

● Accurate forecasts help align driver availability with rider demand.

● ML models predict supply & demand in real time every minute
○ on ~4 million gh6, +airports +venues
○ for 60 mins horizon in 5 min buckets

● Influences critical Lyft products, eg.
○ Real time Incentives
○ Dynamic Pricing
○ Primetime

Streaming Platform

5

Circa 2021

6

● Internal forks of Flink - 1.10, Beam - 2.18

Current

● Internal forks of Flink - 1.17, Beam - 2.50

7

Why Beam

● Flink ++ (like side inputs, x-lang)

● Portability across Runtimes

● API abstraction

● Data scientists productive in Python over Java :)

8

Deployment Workflow

9

Architecture

10

Scale

● Parallelism : 250

● Tasks : 7500 tasks

● Input
○ ~5 million events per minute for supply
○ ~1 million events per minute for demand

● Task Manager(s) : 30
○ Cpu : 24
○ Memory : 192 GB

11

Architecture - I

12

Challenges

● Feature Generation
○ Out-of-band communications to Services
○ Memory Constraints of Long-Running (> 5 mins) Sliding Window Aggregations

○ High checkpointing times and continuous backpressure.
○ Metastable failures - Long GC, Zookeeper

● Model Inference
○ N disparate sinks – throttling
○ Code complexity with M models and R ⊆ M invocation rules.
○ Shadow run models involved launching context-aware shadow pipelines

13

Evolution

14

Takeaways

● Decouple data prep (filtering, svc enrichment) from feature eng. (windowed aggregations)

● Choose partitioning key wisely to limit skewness

● Filter early, filter often.

● Use efficient coders - protobuf

● Monitor memory and (try) limit large sliding window aggregations.

● BatchElements to amortize costs.

● Cache using shared object

15

https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.util.html#apache_beam.transforms.util.BatchElements
https://beam.apache.org/documentation/patterns/shared-class/

Backfill

● Streaming jobs can fail due to various reasons:
○ Source / sink failures
○ Transient service failures
○ Upstream data changes

● Onboarding new models require bootstrapping features computed from
historical time windows

16

Backfill Options

● Separate Batch job
○ Maintain multiple jobs
○ Recipe for online-offline skewness

● Streaming only
○ Custom PTransform with Kinesis and File Source
○ Flink Global watermarks for source synchronization to avoid state size explosion

17

Learnings

18

YAML

19

Tools

● Custom FlinkStreamingPortablePipelineTranslator to register Flink Kinesis, Kafka,
S3 connectors with configurable parallelism.

● Automatically categorize error logs by User or System

● Validation (quasi canary style deployments)

● Analyze Job scale

● Fault Injection tests

20

https://github.com/apache/beam/blob/master/runners/flink/src/main/java/org/apache/beam/runners/flink/FlinkStreamingPipelineTranslator.java

Knobs

● Job

○ Network buffers

○ Tune Managed memory taskmanager.memory.managed.fraction > 0.4

○ Checkpoint Local Recovery

○ (Auto) tune CPU and Memory

○ Bundle size, sdk worker parallelism, task slots.

21

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/memory/network_mem_tuning/

Knobs

● Cluster

○ Disallow node eviction by autoscaler with pod annotation
cluster-autoscaler.kubernetes.io/safe-to-evict

○ Use taints & tolerations to pin jobs to single AZ.

○ Address cluster fragmentation through an automated job re-deploys.

○ Disable DNS caching

22

http://cluster-autoscaler.kubernetes.io/safe-to-evict

(Customer) Surprises

● Head-of-Line Blocking

● Autoscaling

● Canary deployments

● Transient Failures → Stop the world → Restart from checkpoint

● Tradeoff in Completeness, Latency and Accuracy

23

Summary

● Ease of use

● Templatize best practices

● Simple but robust tools

● Integrate into the ecosystem

● Shift left

24

Plans

25

● SQL

● Reliability
○ Load shedding
○ Autoscaling
○ Workload Isolation / Cell based architecture
○ Observability into SDK harness grpc chatter

26

27

Thank you!
Questions?

@maghamravi

https://www.linkedin.com/in/ravimagham/

https://beam.apache.org/case-studies/lyft/

https://www.linkedin.com/in/ravimagham/

