Real time Forecasting
@ Lyft

Ravi Magham

Context

Streaming platform

Real time Forecasting

Learnings

What’s Next

(7]
c
zl1l

-]

Forecasting

Context

e Forecasting is crucial for Lyft to efficiently manage it's marketplace and ensure
optimal service levels.

e Accurate forecasts help align driver availability with rider demand.

e ML models predict supply & demand in real time every minute
o on Y4 million gh®, +airports +venues
o for 60 mins horizon in 5 min buckets

e Influences critical Lyft products, eg.
o Real time Incentives
o Dynamic Pricing
o Primetime

(7]
c
zl1l
<
~

N

Streaming Platform

Circa 2021

e Internal forks of Flink - 110, Beam - 2.18

15 Flink Data

3 B eam P la‘tCorm

Use Cases

X 3=0M

Pi(aehnes Teams

Current

e Internal forks of Flink - 117, Beam - 2.50

25 Flink

125 Beom

Pipelines

DP
Marketplace
Security

Mapping

Teams

Use Cases

X 2

<

<

—
~N

Why Beam

e Flink ++ (like side inputs, x-lang)

e Portability across Runtimes

e APl abstraction

e Data scientists productive in Python over Java :)

Deployment Workflow

/ Flink Cluster \

! Control Panel = :

| / Task Manager Pod \ |

| < Task Manager Container |

| o "9 : |

| e Executable G By K Executable |

| Stage bl i Stage |

. | — |

- Yeud VvC

Client Sp—ap S | K \ SDK Harness / j I
I 2 |

| |

| |

| ﬂob Manager Pod |

| Job Manager Container |

| |

I Flink F::nkPortaLIe % . |

ClientEntryPoint ton Python

| svc Rest API | ©'e 5ttoo | EZ:"’ e |

| |

I \ I

| |

\ 7

Architecture

Scale

Parallelism : 250
Tasks : 7500 tasks

Input
o "5 million events per minute for supply
o ™ million events per minute for demand

Task Manager(s) : 30
o Cpu:24
o Memory:192 GB

X 3=0M

11

Architecture - |

B

(o (2] —(=)— |
O Filter M‘ K:Zo'lz

% SBUEMMM 12

Challenges

e [eature Generation
o Out-of-band communications to Services
o Memory Constraints of Long-Running (> 5 mins) Sliding Window Aggregations
o High checkpointing times and continuous backpressure.
o Metastable failures - Long GC, Zookeeper

e Model Inference
o N disparate sinks — throttling
o Code complexity with M models and R & M invocation rules.
o Shadow run models involved launching context-aware shadow pipelines

X

13

(%)
c
<
<
—

Evolution

> 5min agg features Moal.el
@ Clickhouse Serving

[.c—)__, ier) {_hH«_] o) (i mor m (e ! (i) feost)i kot |
99- eature ‘ 5

SUMMIT 14

IELCEVENS

e Decouple data prep (filtering, svc enrichment) from feature eng. (windowed aggregations)
e Choose partitioning key wisely to limit skewness

e Filter early, filter often.

e Use efficient coders - protobuf

e Monitor memory and (try) limit large sliding window aggregations.

e BatchElements to amortize costs.

e Cache using shared object %g 3 — M

SUMMIT 15

https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.util.html#apache_beam.transforms.util.BatchElements
https://beam.apache.org/documentation/patterns/shared-class/

Backfill

e Streaming jobs can fail due to various reasons:

o Source / sink failures
o Transient service failures
o Upstream data changes

e Onboarding new models require bootstrapping features computed from
historical time windows

% SBUEMMM e

Backfill Options

e Separate Batch job

o Maintain multiple jobs
o Recipe for online-offline skewness

e Streaming only \/

o Custom PTransform with Kinesis and File Source
o Flink Global watermarks for source synchronization to avoid state size explosion

def create_kinesis_and_s3_input():
input = S3AndKinesisInput()
event_config = EventConfig(name='event_intents')
event_config.with_lookback_in_days(7)
input.with_event_config(event_config)
input.with_kinesis_stream_name("stream_name")
return input %

17

(%)
c
<
<
—

Learnings

YAML

pipeline_name: intents
sources:
- type: kinesis
kinesis_stream_name: demand_events
transforms:
- type: convert
transform_name: key_on_id
events:
- event_names: [ride_requested, ride_accepted]
event_transform: demandingestion.functions.key_on_id
aggregation:
- type: window
transform_name: initial_windowing
window_type: sliding
window_size_sec: 600
window_period_sec: 60
trigger:
type: processing_time
time_to_wait_sec: 30
- type: stateful_aggregation

transform_name: 1min_agg —_—
cls: demandingestion.aggregators.StatefulAggregation % 3 _—

19

Tools

e Custom FElinkStreamingPortablePipelineTranslator to register Flink Kinesis, Kafka,

S3 connectors with configurable parallelism.

e Automatically categorize error logs by User or System

e \Validation (quasi canary style deployments)

e Analyze Job scale > sp --help

Commands :
validate

e Fault Injection tests e 1
show
status
update
cancel-deploy
teardown
analyze-scale

Validates a Flink config

Restarts a Flink Application

Redeploys a Flink Application with a new parallelism
Compile a set of configs into YAML

Gets the status of a Flink Application

Updates a Flink cluster with the provided configs

Cancels an in-progress deploy

Teardown a particular version of flink cluster 20
Analyzes performance of a Flink application

https://github.com/apache/beam/blob/master/runners/flink/src/main/java/org/apache/beam/runners/flink/FlinkStreamingPipelineTranslator.java

Network buffers

Tune Managed memory taskmanager.memory.managed.fraction > 0.4
Checkpoint Local Recovery
(Auto) tune CPU and Memory

Bundle size, sdk worker parallelism, task slots.

21

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/memory/network_mem_tuning/

® Cluster

o Disallow node eviction by autoscaler with pod annotation
cluster-autoscaler.kubernetes.io/safe-to-evict

o Use taints & tolerations to pin jobs to single AZ.
o Address cluster fragmentation through an automated job re-deploys.

o Disable DNS caching

22

(%)
c
<
<
—

X

http://cluster-autoscaler.kubernetes.io/safe-to-evict

(Customer) Surprises

e Head-of-Line Blocking

e Autoscaling

e Canary deployments

e Transient Failures =» Stop the world = Restart from checkpoint

e Tradeoff in Completeness, Latency and Accuracy

%SUMMIT 23

Summary

e FEase of use

e Templatize best practices

e Simple but robust tools

e Integrate into the ecosystem

e Shift left

% SBUEM MM 2

Plans

SQL

Reliability
O

@)
@)
(@)

Load shedding

Autoscaling

Workload Isolation / Cell based architecture
Observability into SDK harness grpc chatter

(7]
c
zl1l

26

Thank you!

Questions?

@maghamravi

https://www.linkedin.com/in/ravimagham/

https://beam.apache.org/case-studies/lyft/

27

https://www.linkedin.com/in/ravimagham/

