
September 4-5, 2024

Sunnyvale, CA. USA

Reuniting the two distant cousins:
Calling a Beam Pipeline from an
Airflow Job

Sadeeq Akintola
X / Twitter: @SadeeqAkintola
Online: SadeeqAkintola.com

https://twitter.com/SadeeqAkintola/
https://sadeeqakintola.com/

2

Sadeeq Akintola
● Customer Engineer, Data Analytics Specialist @ Google Cloud
● 13+ Years Industry Experience
● Previous job roles include: Software Engineer, Data Scientist & BI

Analyst, Big Data Engineer
● Ex-Microsoft, ex-KPMG, ex-FMDQ Exchange
● Worked across multiple Geos: Nigeria → Portugal → United Kingdom
● M.Sc. Data Science and Advanced Analytics @NovaIMS, Lisbon.

About the Speaker

Agenda

3

About the Speaker 2

Try the Demo, Clone the Repo 4

Understanding Important Concepts 6

Apache BEAM (Batch + strEAM) 11

Apache Airflow 18

Code Review (Beam Pipeline) 24

Code Review (Airflow DAG) 30

Demo! 44

Useful Resources 46

Try the Demo, Clone the Repo.

4
Visit http://35.222.154.240:8080/ or https://SadeeqAkintola.com/ to try the demo.
Please Star, Fork and Clone the Code Repo here: https://github.com/SadeeqAkintola/beam-summit-2024-airflow

http://35.222.154.240:8080/
https://sadeeqakintola.com/
https://github.com/SadeeqAkintola/beam-summit-2024-airflow

Motivation for this topic:

5

● Previous Experience as a Data Analytics
Consultant

● Current Customer Interactions @ Google
● PyCon US Open Spaces Session
● People always love the idea of a Magic Wand

product that can do everything, perfectly :)

Understanding Important Concepts

6

The Data Pipeline Platform

7

Schedule Dependencies Error Handling Reporting Connectors

There are certain (other) requirements expected of a Modern
Data Pipeline Platform:

Three Common Types of Data Pipelines

8

Scheduled Batch
A bounded set of data which
requires processing in a reactive
manner when an event occurs
(e.g. a data file is uploaded to a
folder)

Realtime (or near realtime) data.
An unbounded stream of data
that it is desirable to process
within a short period of time
(mins → microseconds).

A bounded set of data which
requires processing at regular
intervals (e.g. every day, 4
hours, 5 minutes)

Realtime Triggered Batch

Telecoms Example: Processing audio files
from support call center as they are uploaded
to storage. Running through voice to text
conversion then processing for keywords /
sentiment.

Transport Example: Traffic sensors sending
information about traffic flow. This may
require quick action to be taken (e.g. open /
close lanes)

Retail Example: Looking at purchasing
patterns in store yesterday and comparing
with online. Maybe looking for online to offline
visits.

Data Pipeline Tools

9

Popular tools on Google Cloud used to Processing each Pipelines:

Scheduled BatchRealtime Triggered Batch

Cloud
Dataflow

Cloud
Pub/Sub

Cloud
Functions

Apache
Airflow

Cloud
Composer

App Engine
Scheduled Tasks

Cloud
Dataflow

Apache
Beam

Note: There are other tools in the open source space such as: Kafka, RabbitMQ, Luigi, Oozie, Azkaban, Hadoop etc. A combination of two
or more of these might equally be suitable, depending on the use case.

Challenges in Orchestrating Data Processing Tasks

10

● Complexity of Data Workflows
○ Managing dependencies and data flow between tasks.
○ Ensuring data consistency and integrity across distributed

systems.

● Scalability Concerns
○ Handling large volumes of data efficiently.
○ Scaling resources dynamically based on workload.

● Error Handling and Monitoring
○ Detecting and recovering from failures.
○ Monitoring pipeline performance and resource utilization.

Organizing Data can be such a pain…

Orchestration Need: A pipeline orchestrator manages scheduling,
monitoring, and dependencies, ensuring smooth data flow.

Image source: https://www.123rf.com/photo_65290422_chaos-of-cables-and-wires-on-electric-pole-in-chiang-mai-thailand.html

https://www.123rf.com/photo_65290422_chaos-of-cables-and-wires-on-electric-pole-in-chiang-mai-thailand.html

Apache BEAM (Batch + StrEAM)

11

Apache Beam: Core Concepts

12

● Open source, unified model for
batch and streaming data
pipelines

● Using one of the open source
SDKs, you can build a program
that defines the pipeline

● The pipeline is then executed by

one of Beam’s supported runners
- Apache Apex, Flink, Spark or
Google Cloud Dataflow

13

● Pipeline: encapsulates the entire series of computations involved in reading input data, transforming that data,
and writing output data.

● PCollection: represents a potentially distributed, multi-element dataset that acts as the pipeline's data. Beam
transforms use PCollection objects as inputs and outputs for each step in your pipeline.

● PTransforms: A transform represents a processing operation that transforms data. A transform takes one or
more PCollections as input, performs an operation that you specify on each element in that collection, and
produces one or more PCollections as output.

● I/O Sinks and Sources – The Source and Sink APIs provide functions to read data into and out of collections.
The sources act as the roots of the pipeline and the sinks are the endpoints of the pipeline.

PCollection PCollection OutputInput
Transform Transform Transform

*Example pipeline Apache Beam Programming Guide

Apache Beam: Core Concepts

https://beam.apache.org/documentation/programming-guide/

Pipelines

14

● In Beam, you structure your computation
as a graph of transformations, which we
call a Pipeline.

● Each box here is a transform performing
massively parallel computation, which
we call a PTransform.

● Each Transform of the Pipeline is applied
on a PCollection; the result of apply() is
another PCollection.

● Each arrow represents the data itself,
being transmitted from one PTransform
to the next, which we call a PCollection.

15

A PCollection represents a distributed data set that can be
bounded or unbounded:

● Bounded means we know the PCollection is finite, while
unbounded means that it might be infinite, it might be
finite, but we just don't know.

● A Directed Acyclic Graph of data transformations.

● Possibly unbounded collections of data flow on the
edges.

● May include multiple sources and multiple sinks.

● Optimized and executed as a unit.

● PCollections are immutable.

PCollection

16

● Element-wise Transformation: let say you process element individually and do some transformation on it. For example,
you have a record with the user id and transform the user id to an email address.

○ Most frequently used Map Transform is ParDo = “Parallel Do”.

● Aggregating Transform, also called reduce. Where different elements are processed together.
○ The key primitive is the GroupByKey - which groups key-value pairs by key.
○ It takes multiple elements and combines them.

● Composite transformation: they’re just compound operations of more primitive things. For example, you can have a
combine fn that counts words and then extract the top-K elements.

PTransforms

17

Cloud native, serverless, extensible solution for mission
critical ingestion, ETL, and streaming analytics:

● Fully-managed and auto-configured
○ Resource management: Spinning up and down

the machines that process data.
○ Dynamic work rebalancing: Partition and spread

the data so that all machines have work to do, all
the time.

● Auto graph-optimized for best execution path

● Autoscaling mid-job: if the load goes up or down, adjust
the infrastructure accordingly.

● Dynamic Work Rebalancing mid-job

Why run Beam on Google Cloud Dataflow?

Dataflow: Platform Powered by Google + Rich Open Source
Apache Beam SDK

Apache Airflow

18

Apache Airflow: Core Concepts

19

● Apache Airflow is an open-source workflow
management platform for data engineering pipelines.

● It started at Airbnb in October 2014 as a solution to
manage the company's increasingly complex
workflows.

● Apache Airflow is used for the scheduling and
orchestration of data pipelines or workflows.

● Orchestration of data pipelines refers to the
sequencing, coordination, scheduling, and managing of
complex data pipelines from diverse sources.

Image source: https://airflow.apache.org/docs/apache-airflow/stable/_images/diagram_basic_airflow_architecture.png

https://airflow.apache.org/docs/apache-airflow/stable/_images/diagram_basic_airflow_architecture.png

Apache Airflow: Workflow Principles

20

These are the key principles you need to know about when building an Airflow workflow

DAG

Each Airflow workflow is a python file that is placed in the
dags folder where Airflow runs.

The python syntax used to build the workflow is very
simple and makes use of the operators with simple
arguments for each task.

Configuration as code instead of drag and drop UI.

Arguments

Schedule

Tasks / Operators

Macros

Dependencies

.py File

Apache Airflow: Core Concepts

21

● Directed Acyclic Graphs (DAGs):
○ Represents workflows as a collection of tasks with defined dependencies.
○ Enables workflows to be defined as code for better maintainability.

● Tasks:
○ Basic units of execution within a DAG.
○ Can perform various operations like data fetching and analysis.

● Operators:
○ Templates that define what a task does (e.g., BashOperator, PythonOperator).
○ Variety available for different use cases.

● Hooks:
○ Interfaces to external platforms and services.
○ Used by operators for tasks like database queries or API calls.

● XComs:
○ Mechanism for tasks to exchange small amounts of data.
○ Facilitates communication between tasks in a DAG.

● Architecture:
○ Scheduler: Manages task execution and DAG scheduling.
○ Web Server: Provides a UI for monitoring and managing workflows.
○ Metadata Database: Stores the state of tasks and workflows.
○ Executor: Executes tasks locally or on distributed systems.

● Extensibility and Community:
○ Highly extensible with custom operators and hooks.
○ Supported by a large, active open-source community.

Image source: https://www.altexsoft.com/static/blog-post/2023/11/fc3dd59e-998e-4288-aac1-f172a9204832.jpg

https://www.altexsoft.com/static/blog-post/2023/11/fc3dd59e-998e-4288-aac1-f172a9204832.jpg

Apache Airflow: Directed Acyclic Graphs (DAGs)

22

A DAG in Apache Airflow is a central concept that represents a workflow of tasks
organized in a way that defines their execution order. Here’s a detailed explanation:

● Directed: The connections between tasks have a direction, meaning Task A must
complete before Task B starts, establishing a clear sequence of execution.

● Acyclic: means there are no loops. Once a task is executed, the workflow doesn’t return
to that task; it progresses forward.

● Graph:The DAG is essentially a collection of nodes (tasks) and edges (dependencies)
that represent the workflow. It visualizes the entire pipeline of tasks from start to finish.

● Components of a DAG
○ Dependencies
○ Schedule
○ Operators
○ Execution

Image source: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html

23

Why run Airflow on Google Cloud Composer?

Code Review (Beam Pipeline)

24

Importing Libraries and Reading Files

25

Building the Functions for the Pipeline

26

Worth Noting

● beam.DoFn : The DoFn object that
you pass to ParDo contains the
processing logic that gets applied to
the elements in the input collection.

● PipelineOptions : are used to
configure Pipelines. You can extend
PipelineOptions to create custom
configuration options.

● beam.Pipeline : is the entry point for
constructing and running a data
processing pipeline, defining the
series of transformations and
operations that will be executed on
the input data.

Bringing it all together, and Run!

27

Worth Noting

● The ‘|’ symbol is used as an operator to apply
transformations to a PCollection

● WriteToBigQuery : is a transform used to write
data from a PCollection to a BigQuery table.

Results (Beam) - GCS Folders

28

Before the Pipeline Run After the Pipeline Run

Results (Beam) - Dataflow and BigQuery

29

Before the Pipeline Run

Code Review (Airflow DAG)

30

Import Libraries, Create the DAG,
and Input the Environment Variables in Airflow UI

31

32

● The PythonOperator: executes Python functions as tasks in a
DAG, allowing for flexible workflow management and integration
with other tasks. It supports arguments, retries, and logging.

● The BranchPythonOperator: allows you to conditionally direct
the execution flow of a DAG. It runs a Python function that returns
the taskID of the next task to execute, effectively branching the
workflow. Only the branch selected runs, and downstream tasks
are determined by this choice, allowing for dynamic workflows
based on runtime conditions.

● The DummyOperator: is a no-op operator used primarily as a
placeholder in DAGs. It doesn't perform any action but can be
useful for organizing complex workflows, acting as a boundary, or
grouping tasks without executing any tasks itself. It's often used
for joining or splitting task flows or as a marker in a DAG's
structure.

Operators! Operators!! Operators!!!

Explaining the xcom Libraries

33

The xcom_pull is a method in Apache Airflow that allows a task
to retrieve data (XCom) pushed by a previous task. It can pull
specific data based on task ID, key, and execution date. It’s
typically used for inter-task communication within a DAG to
share information across tasks.

● Purpose: xcom_pull retrieves shared data (XComs) between tasks in a
DAG.

● Communication: Allows tasks to share data using xcom_push and
xcom_pull.

● Task ID: Pull data from a specific task by specifying its task_id.
● Key-Value: Retrieve specific data by providing a key; defaults to all if not

specified.
● Execution Date: Access data from a specific execution date if needed.
● Return Value: Returns the relevant data or a list if multiple records match.
● Usage: Commonly used in task functions/operators for dynamic workflows.
● Limitations: Best for small data; use external storage for large data

transfers.

This code block is the reason for this talk!

34

Fetching data from BigQuery in Airflow

35

Creating a Gemini Flash GenAI Model in Airflow

36

Sending Emails in
Airflow using
SendGrid

37

● Create an account at
https://sendgrid.com/ and register
your API key in the Airflow
Environment Variable.

● Call the Generative AI Model
describe_this_location(location)
function to generate fun facts about the
location entered in the csv file earlier.

● Infuse the results returned with a
preconfigured text to for the email
body. The use the Mail function to send
the email.

https://sendgrid.com/

Update the Email Flag column in BigQuery from Airflow

38

Final Steps: Setup the Task Dependencies

39

● DAG Structure: Tasks are organized in a DAG, with nodes
representing tasks and edges representing dependencies.

● Upstream/Downstream: Tasks must complete upstream tasks
before downstream tasks can start.

● Setting Dependencies: Use >>, <<, set_upstream(), and
set_downstream() to define task order.

● Trigger Rules: Control task execution based on upstream task
outcomes (e.g., all_success, one_success).

● Cross-DAG Dependencies: Enable tasks in one DAG to
trigger tasks in another using sensors.

● Task Groups: Group tasks for better management and
visualization of dependencies.

Use Cloud Functions to Trigger the Airflow
DAG once there’s a new *.csv file in GCS

40

Results (Airflow and Email)

41

Before the Pipeline Run

Remember: “Airflow is (just) an Orchestrator”

42

Demo!

43

Have you tried the Demo? Starred/Cloned the Repo?
Oya, Do it now!!

44
Visit http://35.222.154.240:8080/ or https://SadeeqAkintola.com/ to try the demo.
Please Star, Fork and Clone the Code Repo here: https://github.com/SadeeqAkintola/beam-summit-2024-airflow

http://35.222.154.240:8080/
https://sadeeqakintola.com/
https://github.com/SadeeqAkintola/beam-summit-2024-airflow

Useful Resources

45

Official Documentation:

1. Apache Beam Documentation: https://beam.apache.org/documentation/
2. Apache Airflow Documentation: https://airflow.apache.org/docs/
3. Google Dataflow Documentation: https://cloud.google.com/dataflow/docs/
4. Triggering Beam Pipelines with Cloud Composer (Google Documentation): https://cloud.google.com/composer/docs/how-to/using/triggering-with-gcf

Popular Medium Posts:

5. Event-Based Dataflow Job Orchestration with Cloud Composer, Airflow, and Cloud Functions:
https://qulia.medium.com/event-based-dataflow-job-orchestration-with-cloud-composer-airflow-and-cloud-functions-b61219f9aeaf

6. Launching Dataflow Pipelines via Cloud Composer (Airflow):
https://medium.com/@kolban1/cloud-composer-launching-dataflow-pipelines-38cd29e970d4

7. Launch an Apache Beam Pipeline with Apache Airflow — Part 1/2: Setting up the Airflow Environment with Docker-Compose:
https://medium.com/@carmelwenga/launch-an-apache-beam-pipeline-with-apache-airflow-part-1-setting-up-the-airflow-environment-d97dd64ded18

YouTube Videos:

8. Apache Beam: A Unified Model for Batch and Streaming Data Processing: https://www.youtube.com/watch?v=7DZ8ONmeP5A
9. Flexible, Easy Data Pipelines on Google Cloud with Cloud Composer (Cloud Next '18): https://www.youtube.com/watch?v=GeNFEtt-D4k

10. Cloud Composer - Orchestrating an ETL Pipeline Using Cloud Dataflow: https://www.youtube.com/watch?v=PCg9AQNuK3E

Also, join us for Airflow Summit Next Week: https://airflowsummit.org

https://beam.apache.org/documentation/
https://airflow.apache.org/docs/
https://cloud.google.com/dataflow/docs/
https://cloud.google.com/composer/docs/how-to/using/triggering-with-gcf
https://qulia.medium.com/event-based-dataflow-job-orchestration-with-cloud-composer-airflow-and-cloud-functions-b61219f9aeaf
https://medium.com/@kolban1/cloud-composer-launching-dataflow-pipelines-38cd29e970d4
https://medium.com/@carmelwenga/launch-an-apache-beam-pipeline-with-apache-airflow-part-1-setting-up-the-airflow-environment-d97dd64ded18
https://www.youtube.com/watch?v=7DZ8ONmeP5A
https://www.youtube.com/watch?v=GeNFEtt-D4k
https://www.youtube.com/watch?v=PCg9AQNuK3E
https://airflowsummit.org

Thank You

Interested in learning more about Cloud,
Data and AI?

Schedule a conversation with me:

X / Twitter: @SadeeqAkintola
Online: SadeeqAkintola.com

https://twitter.com/SadeeqAkintola/
https://sadeeqakintola.com/

