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Try the Demo, Clone the Repo.

4
Visit http://35.222.154.240:8080/ or https://SadeeqAkintola.com/ to try the demo. 
Please Star, Fork and Clone the Code Repo here: https://github.com/SadeeqAkintola/beam-summit-2024-airflow 

http://35.222.154.240:8080/
https://sadeeqakintola.com/
https://github.com/SadeeqAkintola/beam-summit-2024-airflow


Motivation for this topic:
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● Previous Experience as a Data Analytics 
Consultant

● Current Customer Interactions @ Google
● PyCon US Open Spaces Session
● People always love the idea of a Magic Wand 

product that can do everything, perfectly :)



Understanding Important Concepts
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The Data Pipeline Platform
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Schedule Dependencies Error Handling Reporting Connectors

There are certain (other) requirements expected of a Modern 
Data Pipeline Platform: 



Three Common Types of Data Pipelines
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Scheduled Batch
A bounded set of data which 
requires processing in a reactive 
manner when an event occurs 
(e.g. a data file is uploaded to a 
folder)

Realtime (or near realtime) data. 
An unbounded stream of data 
that it is desirable to process 
within a short period of time 
(mins → microseconds).

A bounded set of data which 
requires processing at regular 
intervals (e.g. every day, 4 
hours, 5 minutes)

Realtime Triggered Batch

Telecoms Example: Processing audio files 
from support call center as they are uploaded 
to storage. Running through voice to text 
conversion then processing for keywords / 
sentiment.

Transport Example: Traffic sensors sending 
information about traffic flow. This may 
require quick action to be taken (e.g. open / 
close lanes)

Retail Example: Looking at purchasing 
patterns in store yesterday and comparing 
with online. Maybe looking for online to offline 
visits.



Data Pipeline Tools
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Popular tools on Google Cloud used to Processing each Pipelines: 

Scheduled BatchRealtime Triggered Batch

Cloud 
Dataflow

Cloud 
Pub/Sub

Cloud 
Functions

Apache 
Airflow

Cloud 
Composer

App Engine 
Scheduled Tasks

Cloud 
Dataflow

Apache 
Beam

Note: There are other tools in the open source space such as: Kafka, RabbitMQ,  Luigi, Oozie, Azkaban, Hadoop etc. A combination of two 
or more of these might equally be suitable, depending on the use case.



Challenges in Orchestrating Data Processing Tasks
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● Complexity of Data Workflows 
○ Managing dependencies and data flow between tasks. 
○ Ensuring data consistency and integrity across distributed 

systems. 

● Scalability Concerns
○ Handling large volumes of data efficiently. 
○ Scaling resources dynamically based on workload. 

● Error Handling and Monitoring 
○ Detecting and recovering from failures. 
○ Monitoring pipeline performance and resource utilization.

Organizing Data can be such a pain…

Orchestration Need: A pipeline orchestrator manages scheduling, 
monitoring, and dependencies, ensuring smooth data flow.

Image source: https://www.123rf.com/photo_65290422_chaos-of-cables-and-wires-on-electric-pole-in-chiang-mai-thailand.html

https://www.123rf.com/photo_65290422_chaos-of-cables-and-wires-on-electric-pole-in-chiang-mai-thailand.html


Apache BEAM (Batch + StrEAM)
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Apache Beam: Core Concepts
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● Open source, unified model for 
batch and streaming data 
pipelines 

● Using one of the open source 
SDKs, you can build a program 
that defines the pipeline

 
● The pipeline is then executed by 

one of Beam’s supported runners 
- Apache Apex, Flink, Spark or 
Google Cloud Dataflow
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● Pipeline: encapsulates the entire series of computations involved in reading input data, transforming that data, 
and writing output data.

● PCollection: represents a potentially distributed, multi-element dataset that acts as the pipeline's data. Beam 
transforms use PCollection objects as inputs and outputs for each step in your pipeline.

● PTransforms: A transform represents a processing operation that transforms data. A transform takes one or 
more PCollections as input, performs an operation that you specify on each element in that collection, and 
produces one or more PCollections as output.

● I/O Sinks and Sources – The Source and Sink APIs provide functions to read data into and out of collections. 
The sources act as the roots of the pipeline and the sinks are the endpoints of the pipeline.

PCollection PCollection OutputInput
Transform Transform Transform

*Example pipeline Apache Beam Programming Guide

Apache Beam: Core Concepts

https://beam.apache.org/documentation/programming-guide/


Pipelines
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● In Beam, you structure your computation 
as a graph of transformations, which we 
call a Pipeline.

● Each box here is a transform performing 
massively parallel computation, which 
we call a PTransform.

● Each Transform of the Pipeline is applied 
on a PCollection; the result of apply() is 
another PCollection.

● Each arrow represents the data itself, 
being transmitted from one PTransform 
to the next, which we call a PCollection.
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A PCollection represents a distributed data set that can be 
bounded or unbounded: 

● Bounded means we know the PCollection is finite, while 
unbounded means that it might be infinite, it might be 
finite, but we just don't know.

● A Directed Acyclic Graph of data transformations.

● Possibly unbounded collections of data flow on the 
edges.

● May include multiple sources and multiple sinks.

● Optimized and executed as a unit.

● PCollections are immutable.

PCollection
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● Element-wise Transformation: let say you process element individually and do some transformation on it. For example, 
you have a record with the user id and transform the user id to an email address. 

○ Most frequently used Map Transform is ParDo = “Parallel Do”. 

● Aggregating Transform, also called reduce. Where different elements are processed together. 
○ The key primitive is the GroupByKey - which groups key-value pairs by key. 
○ It takes multiple elements and combines them. 

● Composite transformation: they’re just compound operations of more primitive things. For example, you can have a 
combine fn that counts words and then extract the top-K elements. 

PTransforms
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Cloud native, serverless, extensible solution for mission 
critical ingestion, ETL, and streaming analytics: 

● Fully-managed and auto-configured
○ Resource management: Spinning up and down 

the machines that process data.
○ Dynamic work rebalancing: Partition and spread 

the data so that all machines have work to do, all 
the time.

● Auto graph-optimized for best execution path

● Autoscaling mid-job: if the load goes up or down, adjust 
the infrastructure accordingly.

● Dynamic Work Rebalancing mid-job

Why run Beam on Google Cloud Dataflow?

Dataflow: Platform Powered by Google + Rich Open Source 
Apache Beam SDK



Apache Airflow
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Apache Airflow: Core Concepts
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● Apache Airflow is an open-source workflow 
management platform for data engineering pipelines. 

● It started at Airbnb in October 2014 as a solution to 
manage the company's increasingly complex 
workflows.

● Apache Airflow is used for the scheduling and 
orchestration of data pipelines or workflows. 

● Orchestration of data pipelines refers to the 
sequencing, coordination, scheduling, and managing of 
complex data pipelines from diverse sources.

Image source: https://airflow.apache.org/docs/apache-airflow/stable/_images/diagram_basic_airflow_architecture.png

https://airflow.apache.org/docs/apache-airflow/stable/_images/diagram_basic_airflow_architecture.png


Apache Airflow: Workflow Principles

20

These are the key principles you need to know about when building an Airflow workflow

DAG

Each Airflow workflow is a python file that is placed in the 
dags folder where Airflow runs.

The python syntax used to build the workflow is very 
simple and makes use of the operators with simple 
arguments for each task.

Configuration as code instead of drag and drop UI.

Arguments

Schedule

Tasks / Operators

Macros

Dependencies

.py File



Apache Airflow: Core Concepts
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● Directed Acyclic Graphs (DAGs):
○ Represents workflows as a collection of tasks with defined dependencies.
○ Enables workflows to be defined as code for better maintainability.

● Tasks:
○ Basic units of execution within a DAG.
○ Can perform various operations like data fetching and analysis.

● Operators:
○ Templates that define what a task does (e.g., BashOperator, PythonOperator).
○ Variety available for different use cases.

● Hooks:
○ Interfaces to external platforms and services.
○ Used by operators for tasks like database queries or API calls.

● XComs:
○ Mechanism for tasks to exchange small amounts of data.
○ Facilitates communication between tasks in a DAG.

● Architecture:
○ Scheduler: Manages task execution and DAG scheduling.
○ Web Server: Provides a UI for monitoring and managing workflows.
○ Metadata Database: Stores the state of tasks and workflows.
○ Executor: Executes tasks locally or on distributed systems.

● Extensibility and Community:
○ Highly extensible with custom operators and hooks.
○ Supported by a large, active open-source community.

Image source: https://www.altexsoft.com/static/blog-post/2023/11/fc3dd59e-998e-4288-aac1-f172a9204832.jpg

https://www.altexsoft.com/static/blog-post/2023/11/fc3dd59e-998e-4288-aac1-f172a9204832.jpg


Apache Airflow: Directed Acyclic Graphs (DAGs)
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A DAG in Apache Airflow is a central concept that represents a workflow of tasks 
organized in a way that defines their execution order. Here’s a detailed explanation:

● Directed: The connections between tasks have a direction, meaning Task A must 
complete before Task B starts, establishing a clear sequence of execution.

● Acyclic: means there are no loops. Once a task is executed, the workflow doesn’t return 
to that task; it progresses forward.

● Graph:The DAG is essentially a collection of nodes (tasks) and edges (dependencies) 
that represent the workflow. It visualizes the entire pipeline of tasks from start to finish.

● Components of a DAG
○ Dependencies
○ Schedule
○ Operators
○ Execution

Image source: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
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Why run Airflow on Google Cloud Composer?



Code Review (Beam Pipeline)
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Importing Libraries and Reading Files
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Building the Functions for the Pipeline
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Worth Noting

● beam.DoFn : The DoFn object that 
you pass to ParDo contains the 
processing logic that gets applied to 
the elements in the input collection.

● PipelineOptions : are used to 
configure Pipelines. You can extend 
PipelineOptions to create custom 
configuration options.

● beam.Pipeline : is the entry point for 
constructing and running a data 
processing pipeline, defining the 
series of transformations and 
operations that will be executed on 
the input data.



Bringing it all together, and Run!
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Worth Noting

● The ‘|’ symbol is used as an operator to apply 
transformations to a PCollection

● WriteToBigQuery : is a transform used to write 
data from a PCollection to a BigQuery table.



Results (Beam) - GCS Folders
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Before the Pipeline Run After the Pipeline Run



Results (Beam) - Dataflow and BigQuery
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Before the Pipeline Run



Code Review (Airflow DAG)
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Import Libraries, Create the DAG, 
and Input the Environment Variables in Airflow UI

31
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● The PythonOperator: executes Python functions as tasks in a 
DAG, allowing for flexible workflow management and integration 
with other tasks. It supports arguments, retries, and logging.

● The BranchPythonOperator: allows you to conditionally direct 
the execution flow of a DAG. It runs a Python function that returns 
the taskID of the next task to execute, effectively branching the 
workflow. Only the branch selected runs, and downstream tasks 
are determined by this choice, allowing for dynamic workflows 
based on runtime conditions.

● The DummyOperator: is a no-op operator used primarily as a 
placeholder in DAGs. It doesn't perform any action but can be 
useful for organizing complex workflows, acting as a boundary, or 
grouping tasks without executing any tasks itself. It's often used 
for joining or splitting task flows or as a marker in a DAG's 
structure.

Operators! Operators!! Operators!!!



Explaining the xcom Libraries
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The xcom_pull is a method in Apache Airflow that allows a task 
to retrieve data (XCom) pushed by a previous task. It can pull 
specific data based on task ID, key, and execution date. It’s 
typically used for inter-task communication within a DAG  to 
share information across tasks.

● Purpose: xcom_pull retrieves shared data (XComs) between tasks in a 
DAG.

● Communication: Allows tasks to share data using xcom_push and 
xcom_pull.

● Task ID: Pull data from a specific task by specifying its task_id.
● Key-Value: Retrieve specific data by providing a key; defaults to all if not 

specified.
● Execution Date: Access data from a specific execution date if needed.
● Return Value: Returns the relevant data or a list if multiple records match.
● Usage: Commonly used in task functions/operators for dynamic workflows.
● Limitations: Best for small data; use external storage for large data 

transfers.



This code block is the reason for this talk!

34



Fetching data from BigQuery in Airflow
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Creating a Gemini Flash GenAI Model  in Airflow
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Sending Emails in 
Airflow using 
SendGrid
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● Create an account at 
https://sendgrid.com/ and register 
your API key in the Airflow 
Environment Variable.

● Call the Generative AI Model 
describe_this_location(location) 
function to generate fun facts about the 
location entered in the csv file earlier. 

● Infuse the results returned with a 
preconfigured text to for the email 
body. The use the Mail function to send 
the email.

https://sendgrid.com/


Update the Email Flag column in BigQuery from Airflow

38



Final Steps: Setup the Task Dependencies
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● DAG Structure: Tasks are organized in a DAG,  with nodes 
representing tasks and edges representing dependencies.

● Upstream/Downstream: Tasks must complete upstream tasks 
before downstream tasks can start.

● Setting Dependencies: Use >>, <<, set_upstream(), and 
set_downstream() to define task order.

● Trigger Rules: Control task execution based on upstream task 
outcomes (e.g., all_success, one_success).

● Cross-DAG Dependencies: Enable tasks in one DAG to 
trigger tasks in another using sensors.

● Task Groups: Group tasks for better management and 
visualization of dependencies.



Use Cloud Functions to Trigger the Airflow 
DAG once there’s a new *.csv file in GCS

40



Results (Airflow and Email)
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Before the Pipeline Run



Remember: “Airflow is (just) an Orchestrator”
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Demo!
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Have you tried the Demo? Starred/Cloned the Repo? 
Oya, Do it now!!

44
Visit http://35.222.154.240:8080/ or https://SadeeqAkintola.com/ to try the demo. 
Please Star, Fork and Clone the Code Repo here: https://github.com/SadeeqAkintola/beam-summit-2024-airflow 

http://35.222.154.240:8080/
https://sadeeqakintola.com/
https://github.com/SadeeqAkintola/beam-summit-2024-airflow


Useful Resources
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Official Documentation:

1. Apache Beam Documentation: https://beam.apache.org/documentation/
2. Apache Airflow Documentation: https://airflow.apache.org/docs/
3. Google Dataflow Documentation: https://cloud.google.com/dataflow/docs/
4. Triggering Beam Pipelines with Cloud Composer (Google Documentation): https://cloud.google.com/composer/docs/how-to/using/triggering-with-gcf

Popular Medium Posts:

5. Event-Based Dataflow Job Orchestration with Cloud Composer, Airflow, and Cloud Functions:
https://qulia.medium.com/event-based-dataflow-job-orchestration-with-cloud-composer-airflow-and-cloud-functions-b61219f9aeaf

6. Launching Dataflow Pipelines via Cloud Composer (Airflow):
https://medium.com/@kolban1/cloud-composer-launching-dataflow-pipelines-38cd29e970d4

7. Launch an Apache Beam Pipeline with Apache Airflow — Part 1/2: Setting up the Airflow Environment with Docker-Compose: 
https://medium.com/@carmelwenga/launch-an-apache-beam-pipeline-with-apache-airflow-part-1-setting-up-the-airflow-environment-d97dd64ded18 

YouTube Videos:

8. Apache Beam: A Unified Model for Batch and Streaming Data Processing: https://www.youtube.com/watch?v=7DZ8ONmeP5A 
9. Flexible, Easy Data Pipelines on Google Cloud with Cloud Composer (Cloud Next '18): https://www.youtube.com/watch?v=GeNFEtt-D4k 

10. Cloud Composer - Orchestrating an ETL Pipeline Using Cloud Dataflow: https://www.youtube.com/watch?v=PCg9AQNuK3E 

Also, join us for Airflow Summit Next Week: https://airflowsummit.org

https://beam.apache.org/documentation/
https://airflow.apache.org/docs/
https://cloud.google.com/dataflow/docs/
https://cloud.google.com/composer/docs/how-to/using/triggering-with-gcf
https://qulia.medium.com/event-based-dataflow-job-orchestration-with-cloud-composer-airflow-and-cloud-functions-b61219f9aeaf
https://medium.com/@kolban1/cloud-composer-launching-dataflow-pipelines-38cd29e970d4
https://medium.com/@carmelwenga/launch-an-apache-beam-pipeline-with-apache-airflow-part-1-setting-up-the-airflow-environment-d97dd64ded18
https://www.youtube.com/watch?v=7DZ8ONmeP5A
https://www.youtube.com/watch?v=GeNFEtt-D4k
https://www.youtube.com/watch?v=PCg9AQNuK3E
https://airflowsummit.org


Thank You

Interested in learning more about Cloud, 
Data and AI?

Schedule a conversation with me:

X / Twitter: @SadeeqAkintola
Online:  SadeeqAkintola.com

https://twitter.com/SadeeqAkintola/
https://sadeeqakintola.com/

