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Introduction to Cruise



A normal day in the life of a  Cruise AV



Introduction to Terra Platform

How Terra was developed to 
address Cruise's data processing 
challenges.

Terra’s data processing platform on 
Apache Beam.

The flexibility and scalability of 
Apache Beam for handling Cruise’s 
data needs.



Why Terra ?

Hidden technical debt in Machine learning systems Sculley et. 



What Terra  provides?

IO connectors to Cruise data sources
 

Common Transforms and ML specific Ops 

Dependency management

Optimization etc 



● We use the Beam Python SDK, but 
sometimes our ML feature generation 
requires (partially) rerunning our AV stack 
on Apache Beam, which means C++

● Our AV Stack is built on the ROS (Robot 
Operating System) framework

● To oversimplify, our ROS AV stack 
consists of modular nodes that send 
asynchronous messages to each other

● Concretely, this means running one of 
those ROS nodes in a Beam DoFn with 
C++ extension pybindings

AV stack  replay in 
Apache Beam



● Another challenge: abrupt process crashes from C++ (i.e. segfaults) 

● C++ code can crash in ways that bypass Beam Python SDK's exception 
handling, resulting in the dreaded "SDK harness disconnected" or "Timed out 
waiting for an update from the worker" error!

● Moreover, logs from C++ go straight to stdout/stderr and doesn't go through 
the Fn Logging API, which are harder to find in the Dataflow UI

AV stack replay in Beam - C++ 
Sandboxing



● We solve this problem by 
sandboxing C++ execution inside a 
subprocess

● When C++ code crashes, only the 
subprocess terminates, not the 
main Beam SDK Python process

● Also: subprocess fork() causes 
problems for us. We use spawn(). 
See 
https://github.com/grpc/grpc/blob/
master/doc/fork_support.md

AV stack replay in Beam - C++ 
Sandboxing

https://github.com/grpc/grpc/blob/master/doc/fork_support.md
https://github.com/grpc/grpc/blob/master/doc/fork_support.md


● Note that a running in subprocess adds 
overheads, since data needs to be serialized 
and deserialized as it crosses the process 
boundary. 

● Since we have large input data consisting of 
sensor and trajectory data, SerDe overheads 
account for a large part of our processing 
costs, sometimes more than the actual 
feature computation!

● Our Beam pipelines usually has several 
shuffles - each shuffle boundary also 
introduces a SerDe cycle. For example, a 
pipeline with 3 shuffles will cause your data 
to be serialized and deserialized 3 times, in 
addition to the subprocess boundary.

● In addition, shuffle bandwidth costs are also 
significant

Shuffle  and SerDe costs



● Deserialization pushdown -  by keeping input data serialized as raw bytes 
until the last possible moment (i.e. until we need to manipulate it). If the data 
is stored as serialized bytes, Beam Coders don't need to do anything (i.e. 
pickle) as the data passes through shuffle and process boundaries.

● Projection pushdown - don't expand the dimensionality of the data  until 
the last possible step where you need it. For example, we enrich our scenes 
with ground truth object labels only after all shuffle steps. This avoids the 
cost of shuffle bandwidth and serialization of that extra data.

● Compression - we compress all of our data using zstd before a shuffle. 
Your mileage may vary as this is a bandwidth vs compute trade off but for us 
it is a significant net positive.

Shuffle  and SerDe costs - some solutions



● Running the AV Stack in Beam 
introduces some interesting 
challenges.

● For example, the AV will load the 
entire map of the city it's currently 
in, as it has strong spatial locality 
and does not jump between 
different cities.

● Our feature generation pipelines 
however, processes scenes from 
different cities and spanning many 
dates over the past years. Since 
maps change over time, this 
means loading different versions 
of the map.

AV stack replay in Beam - Map loading  challenge I

Semantic Map of San Francisco



● Map loading is an expensive operation, as it downloads a large amount of data 
and has to build spatial indexes, so we cannot afford to do it for every element 
in the PCollection.

● So, we need to group by our data by city/map version in order to amortize the 
cost of map loading over many different elements.

● In practice, the snippet below is not enough, as it causes data skew and limits 
the parallelism of scenes from each city/map version. But that is the general 
idea.

AV stack replay in Beam - Map loading  
challenge II



Optimizing Feature 
Development

● Most "business logic" and processing power of our Apache 
Beam pipelines is spent on feature computation

● Our ML engineers iterate on feature code, they add or modify 
existing features as they perform experiments

● Because of this, it's important to make feature iteration cheap 
and fast

● We solve this with "feature caching"



Feature Graph

● Our features can 
be organized into 
a directed graph

● Features can have 
raw inputs or 
other features as 
dependencies



Feature Graph - 
Recomputation ● Let's say that an 

MLE wants to 
modify feature C (in 
blue) - with a naive 
implementation we 
would need to 
recompute the 
entire feature graph

● However many of 
the feature nodes 
(A, B, D) will 
produce the exact 
same results



Feature Graph - Caching
● We can walk through 

the graph and 
determine which 
features are modified, 
invalidated, or 
unaffected.

● The features that are 
unaffected can be 
cached and reused!

● We can also skip 
reading raw inputs 
that are unneeded - 
this ties to the earlier 
theme of minimizing 
shuffle and SerDE 
costs.



Feature Caching in Beam

● We key our inputs and feature 
cache by "scene uuid", which 
we join with a GroupByKey

● Feature computation only has 
to recompute invalidated 
features by checking the 
feature versions (i.e. V1 -> V2)

● Note: caching is a storage vs 
compute tradeoff - some of 
our features produces outputs 
that are so large that is 
cheaper for us to recompute 
than pay for storage - 
measure your storage costs!



 BigQuery Cache

Speedup Local Iterations

Avoid BQ Slot Contentions Issues

Saves: 60 hours+/week

Before After

BigQuery Job Count



 BigQuery Cache

Speedup Local Iterations

Avoid BQ Slot Contentions Issues



Control Plane

● Terra’s control plane for job 
submission and execution.

● Scheduling policies to 
ensure fair resource 
allocation and capacity 
utilization



Control Plane



Do you have any questions?

https://www.linkedin.com/in/satybald/
https://www.linkedin.com/in/arwin-tio-83b69557/

Thank you!

https://www.linkedin.com/in/satybald/
https://www.linkedin.com/in/arwin-tio-83b69557/

