
September 4-5, 2024

Sunnyvale, CA. USA

Scaling Autonomous
Driving with Apache Beam

Sayat Satybaldiyev
Senior ML System
Engineer II

Arwin Tio
Senior ML System
Engineer II

Introduction to Cruise

A normal day in the life of a Cruise AV

Introduction to Terra Platform

How Terra was developed to
address Cruise's data processing
challenges.

Terra’s data processing platform on
Apache Beam.

The flexibility and scalability of
Apache Beam for handling Cruise’s
data needs.

Why Terra ?

Hidden technical debt in Machine learning systems Sculley et.

What Terra provides?

IO connectors to Cruise data sources

Common Transforms and ML specific Ops

Dependency management

Optimization etc

● We use the Beam Python SDK, but
sometimes our ML feature generation
requires (partially) rerunning our AV stack
on Apache Beam, which means C++

● Our AV Stack is built on the ROS (Robot
Operating System) framework

● To oversimplify, our ROS AV stack
consists of modular nodes that send
asynchronous messages to each other

● Concretely, this means running one of
those ROS nodes in a Beam DoFn with
C++ extension pybindings

AV stack replay in
Apache Beam

● Another challenge: abrupt process crashes from C++ (i.e. segfaults)

● C++ code can crash in ways that bypass Beam Python SDK's exception
handling, resulting in the dreaded "SDK harness disconnected" or "Timed out
waiting for an update from the worker" error!

● Moreover, logs from C++ go straight to stdout/stderr and doesn't go through
the Fn Logging API, which are harder to find in the Dataflow UI

AV stack replay in Beam - C++
Sandboxing

● We solve this problem by
sandboxing C++ execution inside a
subprocess

● When C++ code crashes, only the
subprocess terminates, not the
main Beam SDK Python process

● Also: subprocess fork() causes
problems for us. We use spawn().
See
https://github.com/grpc/grpc/blob/
master/doc/fork_support.md

AV stack replay in Beam - C++
Sandboxing

https://github.com/grpc/grpc/blob/master/doc/fork_support.md
https://github.com/grpc/grpc/blob/master/doc/fork_support.md

● Note that a running in subprocess adds
overheads, since data needs to be serialized
and deserialized as it crosses the process
boundary.

● Since we have large input data consisting of
sensor and trajectory data, SerDe overheads
account for a large part of our processing
costs, sometimes more than the actual
feature computation!

● Our Beam pipelines usually has several
shuffles - each shuffle boundary also
introduces a SerDe cycle. For example, a
pipeline with 3 shuffles will cause your data
to be serialized and deserialized 3 times, in
addition to the subprocess boundary.

● In addition, shuffle bandwidth costs are also
significant

Shuffle and SerDe costs

● Deserialization pushdown - by keeping input data serialized as raw bytes
until the last possible moment (i.e. until we need to manipulate it). If the data
is stored as serialized bytes, Beam Coders don't need to do anything (i.e.
pickle) as the data passes through shuffle and process boundaries.

● Projection pushdown - don't expand the dimensionality of the data until
the last possible step where you need it. For example, we enrich our scenes
with ground truth object labels only after all shuffle steps. This avoids the
cost of shuffle bandwidth and serialization of that extra data.

● Compression - we compress all of our data using zstd before a shuffle.
Your mileage may vary as this is a bandwidth vs compute trade off but for us
it is a significant net positive.

Shuffle and SerDe costs - some solutions

● Running the AV Stack in Beam
introduces some interesting
challenges.

● For example, the AV will load the
entire map of the city it's currently
in, as it has strong spatial locality
and does not jump between
different cities.

● Our feature generation pipelines
however, processes scenes from
different cities and spanning many
dates over the past years. Since
maps change over time, this
means loading different versions
of the map.

AV stack replay in Beam - Map loading challenge I

Semantic Map of San Francisco

● Map loading is an expensive operation, as it downloads a large amount of data
and has to build spatial indexes, so we cannot afford to do it for every element
in the PCollection.

● So, we need to group by our data by city/map version in order to amortize the
cost of map loading over many different elements.

● In practice, the snippet below is not enough, as it causes data skew and limits
the parallelism of scenes from each city/map version. But that is the general
idea.

AV stack replay in Beam - Map loading
challenge II

Optimizing Feature
Development

● Most "business logic" and processing power of our Apache
Beam pipelines is spent on feature computation

● Our ML engineers iterate on feature code, they add or modify
existing features as they perform experiments

● Because of this, it's important to make feature iteration cheap
and fast

● We solve this with "feature caching"

Feature Graph

● Our features can
be organized into
a directed graph

● Features can have
raw inputs or
other features as
dependencies

Feature Graph -
Recomputation ● Let's say that an

MLE wants to
modify feature C (in
blue) - with a naive
implementation we
would need to
recompute the
entire feature graph

● However many of
the feature nodes
(A, B, D) will
produce the exact
same results

Feature Graph - Caching
● We can walk through

the graph and
determine which
features are modified,
invalidated, or
unaffected.

● The features that are
unaffected can be
cached and reused!

● We can also skip
reading raw inputs
that are unneeded -
this ties to the earlier
theme of minimizing
shuffle and SerDE
costs.

Feature Caching in Beam

● We key our inputs and feature
cache by "scene uuid", which
we join with a GroupByKey

● Feature computation only has
to recompute invalidated
features by checking the
feature versions (i.e. V1 -> V2)

● Note: caching is a storage vs
compute tradeoff - some of
our features produces outputs
that are so large that is
cheaper for us to recompute
than pay for storage -
measure your storage costs!

 BigQuery Cache

Speedup Local Iterations

Avoid BQ Slot Contentions Issues

Saves: 60 hours+/week

Before After

BigQuery Job Count

 BigQuery Cache

Speedup Local Iterations

Avoid BQ Slot Contentions Issues

Control Plane

● Terra’s control plane for job
submission and execution.

● Scheduling policies to
ensure fair resource
allocation and capacity
utilization

Control Plane

Do you have any questions?

https://www.linkedin.com/in/satybald/
https://www.linkedin.com/in/arwin-tio-83b69557/

Thank you!

https://www.linkedin.com/in/satybald/
https://www.linkedin.com/in/arwin-tio-83b69557/

