
Solace JCSMP
Apache Beam connector

Brought to you by Solace and Google

Bartosz Zabłocki Israel HerraizMatt Mays Andrew MacKenzie

https://www.linkedin.com/in/bartosz-zablocki/
https://www.linkedin.com/in/herraiz/
https://www.linkedin.com/in/mattmays/
https://www.linkedin.com/in/andrewmackenzie/

What is Solace? Why
this connector?

01

Powering
your real-time,
event-driven
business

Apps

Devices

Data

APIs

Events

Telecom

Manufacturing

Government

Transportation

Retail

Event-driven has crossed the chasm

Origin of Event-Driven
Faster data, faster trades, more money!

Capital Markets

Solace Event Portal

Find and understand all of
your events

Graphically design and
manage your event streams

Launch your event-driven
apps and push to Solace
event brokers

Audit and Govern

Event-driven turns integration “inside out”

Decentralized,
Distributed

Event-Driven

Integration for the
next 20 years

Integration of the
last 20 years

Centralized, Monolithic,
Point to Point,

Tightly-Coupled

Overview of the Beam
connectors

02

Read
connector

Batched

Streaming

Source API
based

Apache Beam
connector

Splittable DoFns
based

Write
connector

Static number of splits,
better compatibility with all
runners

Dynamic number of splits,
only compatible with
portable runners (Dataflow
v2, Flink)
– future work -

Higher throughput, higher
latency

Lower throughput, lower
latency

 Scalability

Parallelize for a single topic or queue (*).
(*) Non-exclusive access queues. Exclusive queues use a single thread.

Queue created automatically for topics.

Read connector

 Summary of config

Optional deduplication.
Client pool size.

 Inputs & Outputs

Inputs: none (initiator node)
Output: Record class, or custom data class

 Requirements from Solace

SEMP API for tracking purposes, create queue
JCSMP API for receiving data

 Scalability

Shuffling right before writing.
Parallel clients in VM, number of used VMs.
No state consumption for batching.

Write connector

 Summary of config

Batched or streaming writers.
Higher throughput or lower latency.
Clients per worker and total workers.

 Inputs & Outputs

Inputs: Record class
Output: Publish results, with latency data (for
persistent msg)

 Requirements from Solace

JCSMP API
for publishing data (persistent or direct)
and receive acks (persistent msg only)

Read connector
Design principles

03

Solace Queue Access Types

Exclusive

Producer

Queue

Active

Standby

Non-Exclusive

Producer

Queue

Active

Active

Consumers

Consumers

Read
permissions?

Queue exists?

Pipeline launch (driver program, creation of Solace resources)

Reading
from topic?

Topic Read & write
permissions?

Exit with
exception

SEMP create
non-exc. queue

SEMP create
topic

subscription (link
topic and queue)

Read with
N splits

Queue

Non-exclusive?

Read with
1 split/thread

Network connectivity with
broker required

Queue not removed when job
finishes

Warning shown to user

Network connectivity with
broker required

Parallelism: how is it decided?

Runner sends a
desired number

of splits

Users specifies a
max number of

clients

Min of both is
used as

pool size /
number of splits

Watermark policy: data freshness
The data freshness measures at a point in time, the time that has elapsed between that
moment and the time when the latest item fully processed by the pipeline was produced.

00:00 00:05 00:10 00:15 00:20 00:25

Event
created

(watermark)

Event
processing

starts 00:00 00:05 00:10 00:15 00:20 00:25

00:30

00:30 00:00 00:05 00:10 00:15 00:20 00:25 00:30

5

10

Time

Data
freshness

Watermark policy: ideal vs real situations with Solace

now: 00:30

Solace Queue

5

Dataflow Read Transform

1 4 2 3
Other

Transforms
00:2000:05 00:25 00:10

Watermark

6

Producer

00:30
event time

Ideal policy

00:15

Solace Queue

5

Dataflow Read Transform

1 4 2 3
Other

Transforms6

Producer

event time

Efficient (real) policy

00:05 00:25 00:1000:30 00:1500:20

Watermark

Backlog estimation using the SEMP API

● The SEMP API (Solace Element Management Protocol) offers backlog metrics

● Endpoint:

○ /SEMP/v2/monitor/help/#/queue/getMsgVpnQueue

● Property:

○ msgSpoolUsage

● The calls to this API are controlled by the runner.

○ The rates of calls to the SEMP API cannot be controlled.

○ With a streaming engine job, we have checked that this API gets called

once every 3-5 seconds.

○ This rate is not correlated to the number of workers.

Write connector
Design principles

04

Pipeline launch (driver program)
● No resources are created by the Write connector in the driver program

○ Much simpler workflow. No interaction with Solace from the driver program

● There is no need for network connectivity when using the Write connector

● But bear in mind that:

○ If you are writing to a queue, it needs to exist prior to the job start

○ If it does not exist, you will have runtime errors in the job

○ All the runtime errors are recoverable if the queue gets eventually created

■ No need to stop the job if you forget to create the destination queue

Parallelism and pool size: two parameters

 VM 1

Client 1.1

Client 1.2

Client 1.3

 VM 2

Client 2.1

Client 2.2

Client 2.3

 VM 3

Client 3.1

Client 3.2

Client 3.3

 VM 4

Client 4.1

Client 4.2

Client 4.3

Cl
ien

ts
 p

er
 w

or
ke

r

Max workers used by writer

Maximum
pool size

Types of writers: batched

Batched

@Setup

@StartBundle

@ProcessElement

@FinishBundle

@TearDown

Async
receiver

Broker

1. Connect

4. Disconnect

2. Publish
batch

Acks

Failures

@FinishBundle

3. Writer
results

Throughput

Latency

Types of writers: streaming

@Setup

@ProcessElement

@TearDown

Async
receiver

Broker

1. Connect

4. Disconnect

 2. Publish

Acks

Failures

@FinishBundle

3. Writer
results

Throughput

LatencyStreaming

Design details of the connectors

Write connector

 Design doc and all pull requests:

github.com/apache/beam/issues/31905

 Last pull request still under review:

github.com/apache/beam/pull/32060

 To appear in Beam 2.60 or 2.61

Read connector

 Design doc and all pull requests:

github.com/apache/beam/issues/31440

 Available since Beam 2.58

https://github.com/apache/beam/issues/31905
https://github.com/apache/beam/pull/32060
https://github.com/apache/beam/issues/31440

Tweaking the Solace session: dispatch mode

Solace session property High Throughput Mode

Pub Ack Window Size 255 1

Message callback on reactor False True

Low Latency Mode

Conclusions

06

Using Solace with Beam is now a very smooth experience
● Read connector available since Beam 2.58

● Write connector to appear in Beam 2.60

○ Reviewers permitting :)

● The SolaceIO connector offers deep integration between Beam and Solace, for all runners

○ Accurate and lively estimation of backlog metrics

■ Better autoscaling for runners that support it

○ Accurate estimation of the watermark based on the Solace message timestamps

○ Efficient usage of Solace resources

■ Client multiplexing in multi-threaded runners

Backup Slides

07

Thank you!

Bartosz Zabłocki Israel HerraizMatt Mays Andrew MacKenzie

https://www.linkedin.com/in/bartosz-zablocki/
https://www.linkedin.com/in/herraiz/
https://www.linkedin.com/in/mattmays/
https://www.linkedin.com/in/andrewmackenzie/

