
September 4-5, 2024

Sunnyvale, CA. USA

Throttling Detection and 
Reactive Worker Downscaling

Yi Hu
Google

GitHub: @Abacn



Agenda

● Problem statement

● Revisit: How does parallelism get determined?

● Throttling metrics

● SDK implementations

● Runner implementations

2



Problem statement

Executing Beam pipelines on 
Dataflow exposes some 
rough edges. Dataflow 
autoscaling can spin up a 
large number of workers that 
can easily overload services 
that IO connector involves...

3

limited quota

Beam 2.56, BigQuery DIRECT_READ TPC-DS_1T (tpc.org/tpcds)

(job cancelled)

sufficient quota

http://tpc.org/tpcds


How does parallelism get determined?

● Available parallelism 
○ Parallelism of source / Number of keys

○ Whether source supports liquid sharding, extent of granularity

Type of sources by ability to parallelize 

○ No parallelism (e.g. JdbcIO.read)

○ Static parallelism (e.g. JdbcIO.readWithPartitions)

○ Bounded Dynamic parallelism (e.g. KafkaUoundedSource)

○ Liquid sharding (e.g. FileIO readRange, BigQueryIO DIRECT READ)

4

Source

DoFn

GBK

Sink



How does parallelism get determined?

● Job signal (up/back/two-way pressure)

○ CPU usage

■ [back pressure] Batch: no upscaling if CPU usage < 5% [1]

■ [two-way pressure] Streaming: utilization hint [2]

○ User supplied metrics

■ [up pressure] Streaming: sources' BacklogBytes

■ [back pressure] Client side throttling metrics

5

[1] https://cloud.google.com/dataflow/docs/horizontal-autoscaling#batch

[2] cloud.google.com/dataflow/docs/guides/tune-horizontal-autoscaling#update-hint



Throttling metrics

● A Beam counter metrics under dedicated name

(THROTTLE_TIME_COUNTER_NAME = throttling-msecs)

To setup such metrics

● Java SDK:

Counter throttlingMsecs = Metrics.counter(
Metrics.THROTTLE_TIME_NAMESPACE, Metrics.THROTTLE_TIME_COUNTER_NAME);

● Python SDK:

THROTTLE_COUNTER = Metrics.counter(__name__, 'cumulativeThrottlingSeconds')

6



Throttling metrics

Notes:

● Under standard Beam metrics API, NO dedicated Beam model (proto) level API

● throttling-msecs counter long existing in a few Beam IOs (Datastore, GcsIO, BigQuery 

STREAM_INSERT) and works for Dataflow legacy worker.

● Recently generalized (#31924, 2.59.0) and extended into more IOs (BigQuery Storage 

API, Bigtable write), works with Dataflow runner v2.

● Up to runner to react on the throttling metrics as of scaling decision.

7

https://github.com/apache/beam/pull/31924


Throttling metrics: SDK implementations

● Goal: extract the throttled time spent on interacting with external resources
○ wait time, latency
○ retry backoff, etc

Depends on where the throttled time incurred

8

Beam IO / Transform Client library Server
Request

Response



Throttling metrics: SDK implementations

● Case 1: Server returns HTTP 429 immediately, and Beam retry with backoff

(e.g. BigQueryIO Storage Write API)

Approach: Set FluentBackoff.withThrottledTimeCounter (#29098, 2.53.0)

9

Beam IO / Transform Client library Server
Request

Response

https://github.com/apache/beam/pull/29098


Throttling metrics: SDK implementations

● Case 2: Client library involves retry, and backoff time tracked in retry callback

(e.g. GcsUtil, BigQueryIO Storage Read API)

Caveat: callback thread may not have metrics container initialized*

Approach: incrementing pending throttling time and report back in DoFn (#31096)

10

Beam IO / Transform Client library Server
Request

Response

*Warning: Reporting metrics are not supported in the current execution environment

https://github.com/apache/beam/pull/31096


Throttling metrics: SDK implementations

● Case 3: Client library involves retry, and backoff time not tracked

(e.g. BigtableIO write)

Bigtable client has built-in rate limiting mechanism, and associated configs, e.g.
○ setThrottlingTargetMs
○ setFlowControl

11

Beam IO / Transform Client library Server
Request

Response



Throttling metrics: SDK implementations

● Case 4: Server latency spikes, time out

Exact throttled time not known, same as Case 3.

Approach (for both Case 3&4):

○ a configurable targeted latency time on API call
○ if latency>set time, excessive amount is reported as throttling time

12

Beam IO / Transform Client library Server
Request

Response



Throttling metrics: Runner implementations

● Dataflow runner scaling decision

Fraction of throttled time:

r=recent throttle time / recent done time

The targeted parallelism overwritten as

p = (1-r)p' 

(p': targeted parallelism without considering the throttled time)

Downscale decision issued after p<current parallelism for 3 minutes.

13



Example: BigQuery Storage Read API 
(#31404)

Before:

After:

14

upscale to 270 worker aggressively, before job cancel
scales down until finish (autoscaler won't kill active 
worker until current work item finish)

https://github.com/apache/beam/pull/31404


Throttling metrics: Runner implementations

● Metrics defined in SDK side, and it is IO connector's responsibility to report

● Runner can react on the throttling metrics, and

● Decision on how runner reacts is runner dependent

○ Currently supported by Dataflow

○ Interface for other runners' support is open

15



16

Thank you!
Questions?

Resources:

Dataflow: Tune Horizontal autoscaling 
https://cloud.google.com/dataflow/doc
s/guides/tune-horizontal-autoscaling

https://cloud.google.com/dataflow/docs/guides/tune-horizontal-autoscaling
https://cloud.google.com/dataflow/docs/guides/tune-horizontal-autoscaling

