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Intro

● Michelangelo @Uber

● Spark for Data Processing

● Ray for ML

● LLM Batch Prediction
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Michelangelo : 
Uber’s Unified ML Platform
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Michelangelo Overview
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ML/AI Evolution
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Predictive ML - Linear / Tree Predictive ML - Deep Learning Generative AI
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AI/ML at Uber’s Scale
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Models in Production

5.3K
Peak Predictions Per Second

16M
# of model trained / month

20K



Data Processing with Spark
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Data Processing Cycle in ML
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Batch Prediction

Model evaluation

Offline serving
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Spark for data processing

● Scalability
○ Large scale data processing, distrutisted

● Speed
○ In memory speed

● Ease to use
○ High level APIs in Java, Scala, Python

● Unified Analytics
○ Batch processing, real time streaming
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Spark Pipeline Model
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Michelangelo Spark PipelineModel

feature 
transformer

pre-DSL 
transformer

ML model 
transformer

model.transform(input_data)

UDF for ML model prediction

DSL = domain specific language

post-DSL 
transformer



Spark for ML
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XGBoost 
model

DL model

● Tabular data
● ~ 1M -10M size
● CPU

● Unstructured / numerical 
data

● ~ 100M -1G size
● GPU

Lack of GPU 
support and 
flexibility for ML



Ray for ML
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Ray Intro

● Open source framework
○ parallel and distributed systems

● Flexible API, scalable, low latency

● Tailored for ML
○ Ray Tune, Ray RLib, Ray Serve

○ Hyperparameter tuning, training
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Spark vs Ray
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Spark Ray

Design propose Large scale data processing, big data Distributed computing with flexibility and 

scalability

Programming 

model

High level declarative, defined 

transformation

Flexible programming, imperative, user defined 

function

ML/AI Traditional batch ML, classification, 

regression

Fine grained control, hyper-parameter tuning, 

training

Real-

time/streaming

Large amount/high throughput Low latency, quick scale individual task



Spark vs Ray (cont’d)
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Spark Ray

Ecosystem Mature, integrated with Hadoop, Hive, 

Hbase

New and growing, Python based ML 

Frameworks, PyTorch, TF, SKLearn

Easy to use High level  APIs, Java, Scala, R

Limited flexibility

Flexible, low level API, deep understanding 

from user



Why Ray for ML

● ML focus 
● Support modern ML case
● Fine grained control
● Scalability and efficiency

○ Efficient resource management
○ Great GPU support
○ Ray on Kubernetes
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Ray for batch Prediction

18

Feature 
prep

Model 
training

Model 
evaluation

Feature 
prep

Offline 
serving

RaySpark

❏ Handle DSL 
transformers

❏ Online / offline 
consistency



Model modification
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Michelangelo Spark PipelineModel

feature 
transformer

pre-DSL 
transformer

ML model 
transformer

post-DSL 
transformer

Torch, TF, Python model
Absorb DSL as part of Graph



Ray for Batch Prediction

● Inference server
○ Same inference server as 

online for consistency

● GPU for prediction
○ Hundreds of GPUs

○ 100M rows
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LLM batch prediction
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LLM

● LLama 8b, 70b, 405b, Mixtral 8x7b

● Fine tuning for custom tasks

● LLM batch prediction
○ Open source / fine tuned model evaluation

○ Large scale batch prediction jobs 
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LLM prediction is costly

● Large model size
○ 70b -> 140GB, 405b -> 810GB
○ Resource intensive, network bandwidth for downloading 

● High latency
○ ~second vs ~ms (ML model)
○ High gpu hours for large jobs

■ 1M rows -> 500 GPU hrs

● Distributed with GPU
○ High end GPUs, H100
○ Multiple level GPU orchestration

■ Parallel node level
■ Tensor parallel in node
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Ray for LLM Batch Prediction
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● Kubernetes for 
clusters

● Ray data for 
streaming 
execution

● Inference server
○ vLLM
○ Triton Server



Ray + vLLM

vLLM - fast and easy to use LLM serving
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ray_dataset.map_batches(
LLMPredictor,
fn_constructor_kwargs={
"model_path": model_path,
"tensor_parallel_size": tensor_parallel_size,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,

},
concurrency=concurrency,
batch_size=batch_size,
**resources_kwarg,

)

model = LLM(
model=model_path,
tensor_parallel_size=tensor_parallel_size,

)

output = model.generate(input)



Summary

● Spark for feature prep

● Ray for ML

● Open source solutions make things easier

26



27

Thank you!
Questions?

Software engineer @Uber 

Michelangelo

Online/offline serving, AI infra, DL 

framework, distributed system

baojun@uber.com

https://www.linkedin.com/in/baoju

nliu/

mailto:baojun@uber.com
https://www.linkedin.com/in/baojunliu/
https://www.linkedin.com/in/baojunliu/
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